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Abstract The study of the unsteady fractional advection–diffusion equation (ADE) is carried out

in cylindrical geometry along with time-exponential concentration on a cylindrical surface. We have

used the Caputo-Fabrizio time-fractional derivative for the fractional model of the advection–dif-

fusion. The analytical solutions for the solute concentration are determined by using integral trans-

formations. For comparison, we also present a numerical scheme to get a numerical solution for

different parameters’ values. For time ordinary derivative approximation, we use the finite differ-

ence method. For space derivatives, we use a pseudo-spectral collocation method for higher-

order accuracies. The advection-diffusion’ classical model is obtained by taking the fractional

parameter to be unit. The influence of the memory, namely, the Caputo-Fabrizio time-fractional

derivative on the solute concentration is studied and compared with the ordinary case. Also, the

impact of the drift velocity is analyzed by employing the Peclet number. It has been found that

the concentration is decreasing with the Peclet number and is increasing with the radial coordinate.

The present investigation will be helpful in future research to use a higher-order approximation for
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ordinary derivatives. As the derivatives in space are ordinary derivatives, we use highly accurate

pseudo-spectral collocation approximation for them.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

In various areas of physics, biology, and engineering, frac-
tional calculus has achieved a mileage stone in applications

of the areas as mentioned earlier [1–5]. The diffusion or heat
conduction, along with the velocity field, transport process,
or ground hydrology, is well explained by the time-fractional
(ADE) advection–diffusion equation. This equation can be

obtained as a result of the balanced equation for the time-
nonlocal constitutive equation. Some problems modeled by
the advection–diffusion are transport phenomena in food pro-

cessing, groundwater solute transport, atmospheric pollutant
transport, wellbores flows, porous soil solute diffusion,
geothermal production with reinjection, and energy storage

in porous media. The classical differential equation did not
describe well many diffusion phenomena like super diffusion
and slow diffusion. The time-fractional derivatives models

describe such processes and their physical aspects very effi-
ciently. Povstenko [6] has provided an excellent comparison
of the sub-diffusion regime and the supper-diffusion regime
with ordinary diffusion. Various solution methods have been

used to solve the (ADE) advection–diffusion equation due to
its extensive application in different fields. Analytical solution
to fractional (ADE) advection–diffusion equation with time-

fractional pulses on the boundary has been found by Rubbab
et al. [7]. A time-fractional heat conduction’s solution with
physical Robin condition on the sphere surface in a two-

layered slab, and the perfect contact of layers has been pre-
sented by Kukla et al. [8]. Massabo et al. [9] have discussed
the analytical solution by comparing it with the famous two-
dimensional infinite domain with some limiting analytical solu-

tions. Peclet numbers have been used to examine the influence
of the boundary conditions on solutions, and the solution is
compared with experimental data. The generalized analytical

solution for ADE (advection–diffusion equation) in the finite
space domain having an arbitrary time-dependent inlet bound-
ary condition has been derived by Chen et al. [10]. An analyt-

ical solution of the convective-diffusion in two dimensions in a
single fiber isotropic capillary membrane for solute transporta-
tion has been presented by Godongwana et al. [11].

Another essential analytical solution for the convection–
diffusion problem has been discussed by Ivanchenko et al.
[12]. The use of local fractional Laplace equation in solving
fractional nonlinear CDE’s (convection–diffusion equations)

with improved Riemann-Liouville derivative has been studied
by Merdan et al. [13]. The discretization method based on
unstructured grids using a finite volume approach is proposed

to solve CDE’s (convection–diffusion equations) in r-z coordi-
nates. A perfect control volume calculation method is pre-
sented by Yu et al. [14].

In this paper, the time-fractional differential equation is
used for the advection–diffusion process in cylindrical geome-
try. Caputo and Fabrizio’s time-fractional derivative is intro-
duced in formulating the governing equation. A new
analytical solution of the ADE (advection–diffusion equation)
in a cylindrical coordinate with initial and time-exponential
boundary source is obtained by employing the integral trans-

forms. The ordinary ADE (advection–diffusion equation)
solution is a particular case of our solution by taking the lim-
iting value of the fractional parameter of the time-derivative to

be unit. The numerical calculations and graphical illustrations
are used to present the fractional parameter (the memory
effect, i.e., the effects on the flow with history) and the drift

velocity (Pe, the Peclet number) on the concentration. To find
the solution to a complex problem, the finite element method
[15–21] and the finite difference method are famous. Numerical
schemes are used to solve general-purpose problems. When we

have to deal with fraction-order derivatives, the classical
approach is not applicable for the discretization of
fractional-order derivatives. The reason is apparent due to

the global effect of fractional-order derivatives. Usually,
fractional-order derivatives are presented in integrals, and
ordinary derivatives are inside of them. In a numerical strat-

egy, we first approximate the integral that gives us a linear
combination of ordinary derivatives. Once we have an expres-
sion that involves ordinary derivatives, we may use a classical

method to approximate ordinary derivatives. In the present
research, we use the first-order approximation of ordinary
derivatives using the forward difference method. It is of inter-
est in future research to use a higher-order approximation for

ordinary derivatives. As the derivatives in space are ordinary
derivatives, we use highly accurate pseudo-spectral collocation
approximation for them.

The paper is organized in the following manner. Section 1
has added the introduction based on the essential investiga-
tions on fractional derivative and numerical techniques. The

scope of this investigation is also part of this section. Section 2
contains the mathematical formulation and analytical solution
of the developed mathematical model. A brief introduction of
the numerical technique, namely, the pseudo-spectral colloca-

tion method, is added in Section 3. A comparison between
analytical and numerical solution is added in Section 4. The
results and discussion of the numerical solution are highlighted

in Section 5. This study’s conclusions are added in the second
last section, and the essential references related to this work are
cited in the previous section of this paper.

2. Formulation of the problem and solution

The one-dimensional unsteady advection–diffusion equation

with constant diffusivity D > 0; in the cylindrical domain with
radius > 0, is given as, [12,14]

@w0ðr0; t0Þ
@t0

þ V0

r0
@w0ðr0; t0Þ

@r0
¼ D

1

r0
@

@r0
r0
@w0ðr0; t0Þ

@r0

� �
;

r0 2 ½0;R�; t0 P 0; ð1Þ
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where w0ðr0; t0Þrepresents the species concentration and V0 the
constant transport parameter.

Along with the advection–diffusion Eq. (1), with following
initial and boundary conditions:

w0ðr0; 0Þ ¼ w0

r0

R

� �V0=D

; ð2Þ

w0ð0; t0Þ ¼ 0; w0ðR; t0Þ ¼ w0expð�k0t
0Þ; k0 P 0; ð3Þ

where w0is the constant species concentration. Consider the
following dimensionless quantities

r ¼ r0

R
; t ¼ Dt0

R2
; w ¼ w0

w0

; Pe ¼ V0

D
; ð4Þ

Eqs. (1)–(3) take the form

@wðr; tÞ
@t

þ Pe
1

r

@wðr; tÞ
@r

¼ 1

r

@

@r
r
@wðr; tÞ

@r

� �
; r 2 ½0; 1�; t

P 0; ð5Þ

wðr; 0Þ ¼ FðrÞ ¼ rPe; ð6Þ

wð0; tÞ ¼ 0; wð1; tÞ ¼ expð�a0tÞ; a0 ¼ k0R
2

D
: ð7Þ

In the above relations, the Peclet number, namely, the

advective and diffusive transport ratio. We introduce the fol-
lowing transformation in Eqs. (5)–(7)

wðr; tÞ ¼ rp#ðr; tÞ; p ¼ Pe=2; ð8Þ
we get

p2

r2
þ @

@t

� �
#ðr; tÞ ¼ @2#ðr; tÞ

@r2
þ 1

r

@#ðr; tÞ
@r

; ð9Þ

#ðr; 0Þ ¼ r�pFðrÞ ¼ GðrÞ ¼ rp; ð10Þ

#ð0; tÞ ¼ 0; #ð1; tÞ ¼ expð�a0tÞ: ð11Þ
The fractional form of the unsteady advection–diffusion

Eq. (9) with CF (Caputo-Fabrizio) time-fractional derivative

operator CFDa
t can be written as

CFDa
t#ðr; tÞ ¼

@2#ðr; tÞ
@r2

þ 1

r

@#ðr; tÞ
@r

� p2

r2
#ðr; tÞ; ð12Þ

where the CF (Caputo-Fabrizio) time-fractional derivative

operator CFDa
t is given by [22–23]

CFDa
t#ðr; tÞ ¼

1

1� a

Z t

0

@#ðr; sÞ
@s

exp
�aðt� sÞ
1� a

� �
ds; 0

< a < 1: ð13Þ
with the properties [6,18,19]:

L CFDa
t#ðr; tÞ

� � ¼ qL #ðr; tÞf g � #ðr; 0Þ
ð1� aÞqþ a

; ð14Þ

lim
CF

a!1
Da

t#ðr; tÞ ¼
@#ðr; tÞ

@t
; ð15Þ

where L #ðr; tÞf g ¼ #
�
ðr; qÞ ¼ R1

0
#ðr; tÞe�qtdt is the Laplace

transform of a function #ðr; tÞ. Eq. (13) is known as the first-
order time discretization of the updated developed
fractional-order derivative. The information related to this

operator can be seen from these Refs. [24,25].
2.1. Analytical solution for the time-fractional advection–
diffusion process

To find an analytical solution for the fractional diffusion Eq.

(12) along with the initial and boundary conditions (10) and
(11), we will use Laplace transformation coupled with the finite

Hankel transform of order p.
Applying the Laplace transform to Eqs. (11) and (12), using

Eqs. (10) and (14), we obtain the following transformed form:

bq

qþ ab
#
�
ðr; qÞ � b

qþ ab
GðrÞ ¼ @2

@r2
þ 1

r

@

@r
� p2

r2

� �
#
�
ðr; qÞ; ð16Þ
#
�
ð0; qÞ ¼ 0; #

�
ð1; qÞ ¼ 1

qþ a0
; ð17Þ

where b ¼ 1
1�a ; 0 < a < 1.

Now, applying the finite Hankel transform [26] of order pto
Eq. (16) and by using Bessel functions’ properties, we have

bq

qþ ab
#
��

pðsn; qÞ � b

qþ ab
Jpþ1ðsnÞ

sn

¼ snJpþ1ðsnÞ#
�
ð1; qÞ � s2n#

��

pðsn; qÞ; ð18Þ

where sn; n ¼ 1; 2; ::: are the + ve roots of the transcendental

equation JpðxÞ ¼ 0and #
��

pðsn; qÞ ¼
R 1

0
#
�
ðr; qÞrJpðrsnÞdr the finite

Hankel transform of the function #
�
ðr; qÞ.

Using Eqs. (17) and (18) we obtain

#
��

pðsn; qÞ ¼ snJpþ1ðsnÞ
qþ a0

qþ ab
ðbþ s2nÞqþ abs2n

þ b

ðbþ s2nÞqþ abs2n

Jpþ1ðsnÞ
sn

: ð19Þ

Eq. (19) can be simplified as

#
��

pðsn; qÞ ¼ Jpþ1ðsnÞ
snðqþa0Þ þ

a0bJpþ1ðsnÞ
sn ½ðab�a0Þs2n�a0b�ðqþa0Þ �

ab2snJpþ1ðsnÞ
ðbþs2nÞ½ðab�a0Þs2n�a0b�

1

qþabs2n
bþs2n

þ b
ðbþs2nÞ

Jpþ1ðsnÞ
sn

1

qþabs2n
bþs2n

:
ð20Þ

Firstly, by applying inverse Laplace transform, inverse

Hankel transform, and by using the integral [18]R 1

0
rpþ1JpðrsnÞdr ¼ Jpþ1ðsnÞ

sn
, we have

#ðr; tÞ ¼ rpe�a0t þ 2a0be
�a0t

P1
n¼1

JpðrsnÞ
sn ½ðab�a0Þs2n�a0b�Jpþ1ðsnÞ �

2a0b
P1

n¼1
JpðrsnÞ

sn ½ðab�a0Þs2n�a0b�Jpþ1ðsnÞ exp � abs2nt
bþs2n

� �
:

ð21Þ

By using Eq. (8), we get the species concentration corre-

sponding to the time-fractional advection–diffusion process, as

wðr; tÞ ¼ rp#ðr; tÞ; ð22Þ

where #ðr; tÞis given by Eq. (21).



1734 Q. Rubbab et al.
2.2. Analytical solution for the ordinary advection–diffusion
process (a ! 1; b ! 1)

To find the solutions corresponding to the ordinary advection–
diffusion process, we apply the limits a ! 1; b ! 1 in Eq.

(21)

#cðr; tÞ ¼ rpe�a0t þ 2a0
X1
n¼1

� JpðrsnÞ
snðs2n � a0ÞJpþ1ðsnÞ expð�a0tÞ � expð�s2ntÞ

� 	
: ð23Þ

where #cðr; tÞ ¼ lim
a ! 1;
b ! 1

#ðr; tÞ. The corresponding species

concentration is given by

wcðr; tÞ ¼ rp#cðr; tÞ: ð24Þ
3. Numerical technique

The numerical discretization of fractional order derivatives is
challenging compared to the discretization of ordinary deriva-

tives. We define initial t1 ¼ 0 and final time tn. We take uni-
form step-size Dt and nt the total number of t grid-points.
The time partition can be written as

t1; t2; t3; � � � ; tnf g
Caputo-Fabrizio time-fraction derivative operation can be

written as

CFDa
t# r; tið Þ ¼ 1

1� a

Z ti

tj

exp
�a ti � sð Þ

1� a

� �
@# ti; sð Þ

@s
ds: ð25Þ

The integral can be subdivided into small intervals as

CFDa
t# r; tið Þ ¼ 1

1� a

Xi�1

j¼1

Z tjþ1

tj

� exp
�a ti � sð Þ

1� a

� �
@# ti; sð Þ

@s
ds: ð26Þ

We can approximate the integralZ tjþ1

tj

exp
�a ti � sð Þ

1� a

� �
@# ti; sð Þ

@s
ds

� @# r; sð Þ
@s

js¼t
jþ1

2

Z tjþ1

tj

exp
�a ti � sð Þ

1� a

� �
ds: ð27Þ

Furthermore, we can compute the integralZ tjþ1

tj

exp
�a ti � sð Þ

1� a

� �
ds;

analytical, and it has the value

1

1� a

Z tjþ1

tj

exp
�a ti � sð Þ

1� a

� �
ds

¼ 1

a
1� exp

�a ti � sð Þ
1� a

� �� �
exp

aDt
1� a

ðjþ 1� iÞ
� �

: ð28Þ

And

g jþ 1� i;Dt; að Þ ¼ exp
aDt
1� a

jþ 1� ið Þ
� �

:

For i ¼ nt and j ¼ 1; 2; � � � ::; nt � 1;we have the vector

g ¼ g 0ð Þ; g �1ð Þ; g �2ð Þ; � � � ; gð2� nt½ �T: ð29Þ
We can construct a matrix of size ðnt � 1Þ � ðnt � 1Þ form

of the vector g as

A ¼

g 0ð Þ
g �1ð Þ g 0ð Þ
g �2ð Þ g �1ð Þ g 0ð Þ

..

. ..
.

g 2� ntð Þ g 2� ntð Þ � � � g �1ð Þ g 0ð Þ

2
66666664

3
77777775

ð30Þ

Approximation of time-fraction derivative can be written as

CFDa
i #ðr; t1Þ

CFDa
i #ðr; t2Þ
:

..

.

CFDa
i #ðr; tnÞ

2
6666664

3
7777775
�

gð0Þ
gð�1Þ
gð�2Þ

g 0ð Þ
g �1ð Þ g 0ð Þ

..

. ..
.

gð2� ntÞ gð3� ntÞ � � � gð�1Þ gð0Þ

2
66666664

3
77777775

@# r;sð Þ
@s js¼t

1þ1
2

@# r;sð Þ
@s js¼t

2þ1
2

..

.

@# r;sð Þ
@s js¼t

nt�1þ1
2

2
666666664

3
777777775

ð31Þ

The approximation of vector

@# r;sð Þ
@s js¼t

1þ1
2

@# r;sð Þ
@s js¼t

2þ1
2

..

.

@# r;sð Þ
@s js¼t

nt�1þ1
2

2
666666664

3
777777775

is computed as

@# r;sð Þ
@s js¼t

1þ1
2

@# r;sð Þ
@s js¼t

2þ1
2

..

.

@# r;sð Þ
@s js¼t

nt�1þ1
2

2
666666664

3
777777775
� 1

Dt

1

�1 1

�1 1

�1 1

2
66664

3
77775

#2 rð Þ
#3 rð Þ
..
.

#nt rð Þ

2
66664

3
7777523em� #1 rð Þ

Dt

1

0

..

.

0

2
66664

3
77775;

ð32Þ

where hi rð Þ ¼ h ti; rð Þ:By using the above approximation and

(31), we get
Fig. 1 Comparison between analytical and numerical solutions.



Fig. 2 The dynamic evolution of the concentration wcðr; tÞ for the different fractional parameters a different values of the time t, a0 = 1,

and Peclet number Pe = 4.
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Fig. 3 The dynamic evolution of the concentration wcðr; tÞfor a range of the Peclet number, different time t, a0 = 0.25, and the

fractional parameter a = 0.5.
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CFDa
i #ðr; t1Þ

CFDa
i #ðr; t2Þ
:

..

.

CFDa
i #ðr; tnÞ

2
6666664

3
7777775
� g

Dt
AB# rð Þ g#1 rð Þ

Dt
A

1

0

..

.

0

2
66664

3
77775; ð33Þ

where

# rð Þ ¼

#2 rð Þ
#3 rð Þ
..
.

#nt rð Þ

2
66664

3
77775

and

B ¼
1

�1 1

�1 1

�1 1

2
66664

3
77775

For space discretization, we use the pseudo-spectral collo-

cation method. Let D1 and D2 are pseudo-spectral-
collocation operators for the approximation of first-order
and second-order derivatives, respectively. We make the parti-

tion of r 2 ½0; 1� as fr1; r2; � � � ; rnrg. The sizes of D1 and D2 are
nr. To deal with a second-order boundary value problem, we
construct the following differential operator for our problem.

D ¼ D2ð2 : nr � 1; 2 : nr � 1Þ þ diagð1:=rð2 : nr � 1ÞÞ
D1ð2 : nr � 1; 2 : nr � 1Þ � diagðp2:=rð2 : nr � 1Þ:2Þ ; ð34Þ

where :=, are the element-wise operation of division and power
in Matlab format. The meaning of 2 : nr � 1 is 2; 3; � � � ; nr � 1.
To accommodate the boundary conditions, we define two col-

umn vectors

d1 ¼ D2ð:; 1Þ þ diagð1:=rð2 : nr � 1ÞÞD1ð:; 1Þ
d2 ¼ D2ð:; nrÞ þ diagð1:=rð2 : nr � 1ÞÞD1ð:; nrÞ

; ð35Þ

where D1or2ð:; iÞ means ith column of D1or2ð:; iÞ matrix. We can
write down the discretization of our problem in this form

M ¼ I� Dt
g
ðD� CÞ;

m ¼ Dt
g
ðd1 � C#1 þ d2 � C#nr þ /� B�1e1Þ; ð36Þ

where C ¼ ðABÞ�1
, # ¼ ½#2; #3; � � � ; #nr�1�T, hi ¼ ½#ðri; t2Þ;

#ðri; t3Þ; �; #ðri; tntÞ�T, e1 is the first column identity matrix I,

#1 and #nr are vectors for boundary conditions, and / is a vec-
tor that implements initial condition. The nonlinear equation
is discretized by using a pseudo-spectral collocation method

[26] based on Newton Raphson Method [27–30]. It is well-
known that the pseudo-spectral collocation method offers high
accuracy in the approximation of derivatives. To perform
numerical simulation, we take the size of the system of nonlin-

ear equation n ¼ 100:The total number of equations is 200; we
are solving a system of nonlinear coupled equations. In all the
simulations, we take 0 as an initial guess, and on average, we

get numerical accuracy in the solution of a system of nonlinear
equations.
Finally, by solving a system of linear equations

M# ¼ m;

we get the solution vector

#:
4. Comparison between the analytical and numerical solution

For the validity of our analytical solution, which is obtained

by the Laplace, transformation is compared with the numerical
solution obtained with the help of the pseudo-spectral colloca-
tion method. The detail of this method is already mentioned in
the previous section. We have constructed Fig. 1 to highlight

the comparison of both solutions and noted that both solu-
tions are very closed to each other.

5. Numerical results and discussion

This section deals with the interpretation of the analytical
results for the solute concentration with the graphical illustra-

tions. We have used Mathcad software for numerical results.
Fig. 2 illustrates the effects of the fractional parameter on
the solute concentration wcðr; tÞ. It has been seen that neat

the surface of the cylinder there exists values of the fractional
parameter a for which the solute concentration with respect to
the fractional advection–diffusion process is higher as com-

pared with the ordinary model. Moreover, the converse behav-
ior has been also observed for some other values of the
fractional parameter a. In conclusion, the fractional parameter
a which indicates the memory effects (i.e. the effects on the his-

tory of the flow) has a significant influence on the solute con-
centration as compared with the ordinary model of the
advection–diffusion process. Fig. 3 describes the effects of

Pe(Peclet number) on the concentration wcðr; tÞ. It has been
observed that drift velocity changes equivalent to the change
in the Peclet number. The domination of the (diffusion or

the advection) transport process is shown by the Peclet num-
ber. A decrease in solute concentration has been observed with
the increase in Peclet number whereas the concentration
increases with the radial coordinate r: For Pe = 1

(p = 0.50), the solute concentration wcðr; tÞincreases almost
linear.
6. Conclusions

In the present research, we use the first-order approximation of
ordinary derivatives by using the forward difference method. It

is of interest in future research to use a higher-order approxi-
mation for ordinary derivatives. As the derivatives in space are
ordinary derivatives, we use highly accurate pseudo-spectral

collocation approximation for them.
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