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Abstract

In this research work, mathematical modeling for steady magnetized two-dimensional (2D) incompressible flow of Jeffrey
nanofluid is developed over a stretched curved surface with combined characteristics of activation energy, Brownian motion,
viscous dissipation, nonlinear mixed convection, magnetohydrodynamics (MHD), Joule heating and thermophoresis diffusion.
Velocity slip condition is further imposed on the curved stretched boundary. Total entropy generation rate which depends on
the velocity, temperature and concentration fields is obtained via second law of thermodynamics. The dimensional differential
equations are altered into dimensionless ordinary differential system by using appropriate similarity variables. The obtain system
of dimensionless differential equations are solved numerically through Built-in-Shooting method. The influence of sundry flow
variables associated with this problem like curvature parameter, velocity slip parameter, Deborah number, thermophoresis
diffusion, Prandtl number, Brownian motion, chemical reaction, Brinkman number and activation energy are sketched for
entropy generation rate, concentration, temperature and velocity field. Furthermore, Nusselt number and skin friction coefficient
are calculated numerically in the presence of Deborah number, slip parameter, thermophoresis parameter, Eckert number and
Brownian diffusion parameter. It is noted that velocity field is an increasing function of curvature parameter, while contrast
impact is observed for Deborah number and velocity slip parameter. It is also seen that the magnitude of skin friction upsurges
versus Deborah number while decays against relaxation time. Nusselt number is increased via larger Eckert number and declines
against thermophoretic parameter.

(© 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Nano/micro heat transport has been a significant problem for engineers and researchers in the last couple
of years. The micro-devices which dimensions between 1 um to 1 mm are effectively used in biomedical,
mechanical and industrial engineering like pharmaceutical industry, electronics, automotive industries, aerospace and
telecommunication to increase heat transfer rate for heating as well as cooling. The capability of heat transport can be
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upsurged by different techniques, i.e., the utilization of vibration to heat transport surfaces, extended surfaces and the
use of micro/mini-channels. On the other hand, the efficiency of heat transport can also be enhanced by increasing
the transport characteristics of the working material, specifically the specific heat and thermal conductivity. The
newly improved thermo-physical characteristics of working liquids are known as nanofluid or hybrid nanofluids [1—
7]. By merging hybrid or nanofluids with the small channel’s dimensions of the thermal tools, it is to get devices
that give efficiency, compactness and low thermal resistance. The entropy generation (EG) examination is a valuable
tool for execution optimization of the thermal frameworks. The EG rate could be influenced by the addition of
nanoparticles in the continuous phase liquid. Therefore, the use of nanoliquids in the thermal frameworks decline
the temperature of the system and the heat transport involvement to the total EG rate finally diminishes, while
nanomaterial submerged into the continuous phase liquid boost the viscosity of the working liquid leads to upsurge
pressure drop in the framework. Numerous analyst and investigators have examined the EG in order to minimize
the rate for various thermal systems and not yet single research article is published to discuss EG in flow of
Jeffrey nanofluid over a curved surface. Xie and Jian [8] studied magnetized electroosmotic flow of non-conducting
viscoelastic liquid in two layer systems with entropy generation. Shah et al. [9] analyzed entropy optimized flow
of ethylene glycol and aluminum nanoparticles towards a stretched surface. Ahmed at al. [10] explored unsteady
entropy optimized squeezing flow with five different nanoparticles (silver, titanium oxide, water, aluminum oxide,
copper oxide) between two parallel plates. Flow behavior and heat transfer rate in forced convective turbulent flow
with entropy generation via isotropic permeable media is scrutinized by Torabi et al. [11]. In this problem, they used
RANS models. Mathematical modeling for two-phase flow with titanium oxide and graphene oxide in the presence
of entropy generation and second order velocity slip over a stretched surface is developed by Khan et al. [12]. Few
more research work on entropy generation can be found in Refs. [13-20].

The development of the stretched flows in the last couple of years encouraged their fruitful implementation in
different applications as in the hot rolling, rubber sheet, glass fiber, continuous casting and drawing of annealing
wires, fiber spinning, melt spinning, glass blowing, cooling of huge metallic plate, polymer extrusion from a dye,
paper production annealing of copper wires, wire drawing liquid crystals in condensation procedure and so forth
others. The pioneer work on the development of flow over a plate surface or sheet was done by Sakiadis in 1961.
The flow behavior is studied in this problem by a sheet with constant speed from a slit into a liquid at rest. The
flow was of Blasius type. In 1970, Crane [21] extend the work of Sakiadis [22] by taking the plate surface is
stretched and the boundary layer thickness enhanced with the distance from the slit. Heat and mass transport with
blowing and suction effects by a stretching surface is discussed by Gupta and Gupta [23]. Lok et al. [24] considered
non-orthogonal stagnation point flow via stretchable surface and computational results of the differential equations
are found out through Keller-box method. Abel and Nandeppanavar [25] examined heat transport in magnetized
flow of viscoelastic fluid towards a stretchable surface subject to non-uniform heat source/sink effect. Ishak and
Pop [26] work on stagnation point flow with melting heat transport characteristics over a shrinking/stretching
surface. Bao and Yang [27] explored bifurcation investigation of the stretch-twist-fold flow in generalized form.
Turkyilmazoglu [28] studied flow of traditional viscoelastic (Jeffrey) Hamel fluid due to point sink or source
towards a convergent/divergent channels. Si et al. [29] presented time dependent two-dimensional non-magnetized
flow and heat transport of viscous liquid by a permeable stretched cylinder. Mathematical modeling for 2D steady,
incompressible flow and heat transfer is developed by Mustafa et al. [30] over a stretchable rotating disk with
nanomaterials. Few fruitful research work based on nanofluid can be found in Refs. [31-35].

This research work provides a comprehensive note on entropy generation (EG) in nanofluid flow towards a curved
stretched surface with combined effects of activation energy, Brownian motion, viscous dissipation, nonlinear mixed
convection, magnetohydrodynamics (MHD), Joule heating and thermophoresis diffusion. The nonlinear dimensional
differential equations are altered into ordinary ones with the help of appropriate similarity variables. Numerical
results are obtained through Built-in-Shooting method [36]. The results are compared with Sajid et al. [37] and Saif
et al. [38] and found very good agreement.

2. Constitutive relations

In tensor form, the constitutive relation for Jeffrey fluid is addressed as

T=—-pl+r, (1)
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The Cauchy stress tensor for Jeffrey fluid is defined as
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Invoking Egs. (8) and (9) in Eq. (7), we arrive
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Put Eq. (10) in Eq. (6), one has
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In the above equations 7', p, 7, A1, A2, Ay, Al represent Cauchy stress tensor, pressure, extra stress tensor, ratio of
relaxation to retardation time, retardation time, first Rivlin—Erickson tensor and material time derivative respectively.

3. Statement

Here magnetized steady 2D incompressible flow of non-Newtonian fluid (Jeffrey fluid) is considered towards
a curved surface. Flow is generated due to curved stretched surface. The flow is electrical conducting through
applied magnetic field of strength Bj. Nonlinear mixed convection is considered. The mixed convection occurs
when both forced and natural convections act together in a fluid to transfer heat. It is also addressed as in
the literature where both buoyant and pressure forces act together. Brownian and thermophoretic effects are
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studied by nanofluid. Entropy minimization and Bejan number is further studied. Velocity slip is accounted for
boundary condition of momentum equation and nonlinear mixed convection is established in velocity equation.
Heat and mass transfer is studied with additional effect of viscous dissipation and activation energy respectively.
Flow is along r— direction and sheet is stretched along s—direction. In the boundary conditions u = U, =
as + - H [1 + )»2( + ri—?%)] [g—‘r‘ + 5 ng—ls’ - R] represents the stretching velocity along with first order
velocity, v 0 means there is no suction/injection at the curved surface, T, Cy, Too, Cx highlight the wall
as well as ambient temperature and concentration respectively. Governing equations for Jeffrey model subject
to nonlinear mixed convection, magnetohydrodynamics, activation energy, Brownian motion, viscous dissipation,
chemical reaction, thermophoresis diffusion and Joule heating are in tensor form are addressed as [39,40]:

0 du
— [(r + R)v]+ R— =0, (14)
or as

Vor Yy T Ros iR

— [(r + R, 15)

ov Ru odv u? _ ap Tys n R ot 1
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ou Ru ou uv R 0 R 01y
o (”a_r + 7+R s + r+R) = T ¥R 0{ + r+R as + (r+R)2 or [(}’ + R)zr”] (16)
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2 (C = Coo) () exp[ 2],

where (u,v), (,s), p, R, o, By, T, k, (,ocp)f, (pcp)p, S: L, Dy, Ty, Dg, C, ky, Cop, n = [—1,1], E,, k =
5.67 x 1073 eV/K highlight the velocities, curvilinear coordinates, density, radius, electrical conductivity, strength
of magnetic field, temperature, thermal conductivity, heat capacity of fluid, heat capacity of solid, the viscous
dissipation, the coefficient of thermophoretic, ambient temperature, Brownian diffusion coefficient, concentration,
chemical reaction rate, ambient concentration, the fitted rate constant, activation energy and Stefan Boltzmann
constant respectively. Here S : L is addressed as
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After putting extra stress tensors final form of equations become
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Finally, implementing the technique [41] and boundary layer concept [42], we arrive to the following differential
system

i{(r + R)v} + Ra—u =0, 24)
or as

51



M.I. Khan and F. Alzahrani Mathematics and Computers in Simulation 185 (2021) 4761

2
a
pu__ 9. (25)
r+ R ar
ou uR du u R
p (v + s+Ras + r+_vR) = TR dv — o Bju
480 (B1 (T = Too) + B2 (T = Tx)> + B3 (C — C) + B4 (C — Cx0)?)
8%u du 2R 9v u
T r+_Ra_r + G+RZ2 s~ (r+R)? (26)
R du 8%u Ru_ 3%u R du du 3v3u
+1+x1 4 F+R or oros + (+R) 3r239s  G+RZds ar " or a2
2 +v+u8_v_13_uav+v82
ar3 (r4+R)? or r+R or or (r+R) ar2
with
Ru 0 ou R dv u
u=Uy=as+ 2 [1+ 2 g5 + 55505 + 575 — =]
v=0, T=T, C=C, atr =0, 27
u— 0, g;‘—>0 T —> Ty, C > Csx atr — o0.
Let
—R a T —T.
=asf'(§), v= L E=_|—r, p=pa’s’PE), 0 = —= 28
u=asf®), v="pJavf @), & \fvr p=paPE), 0= (28)
The above system is altered into the following ordinary differential system
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where K, L), M, B, Pr, Nt, Ec, Nb, Sc, \*, B, B., N*, ki, a;, E; show the curvature parameter, slip
parameter, magnetic parameter, Deborah number, Prandtl number, thermophoretic parameter, Eckert number,
Brownian diffusion parameter, Schmidt number, mixed convection parameter, nonlinear thermal and solutal mixed
convection parameters, ratio of buoyancy forces, reaction parameter, temperature difference parameter and activation
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energy parameter respectively. These parameters are defined as

pcp) v Dy (Ty T,
K = VIR Li=ny/T M =S5 p—ia, Pr= LR Ny = ClD T
2.2 *p) . Dp(Cy—C — 53
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Ty—T Eq
o) = wTu’oo El = Pt

For omission of pressure term, we have taken derivative of Eq. (30) and put it in Eq. (29), one has
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Form Eq. (30), we can also find the pressure
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4. Engineering interest

The engineering quantities like skin friction is defined as

Crp = -
fs %Uz%’

— Sqw
Nur = 2o
where
_ Ru 5 \][ou 4 R dv _ _u
Trs = 1+)\- [1+)"2( r+r+R8s)][3r+r+RBS r+R]’
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Finally we arrive
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C+R 05 _ a0 f(O) K ,
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where (Re)% (: \/%s) highlights the Reynolds number.

5. Entropy modeling

The entropy equation for the given flow is expressed as

2 2
kK (0T 1 R aC R,D (0C oT
K- A B + — @ + 8 el + g
en —
§ T2 \ or Tso w \ Or Too ar or
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T
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Joule heating irreversibility
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where the @ is defined as

_uv_ azu uv__ du __ u?v ]
9\ 2 5 ) ¥R 3r2 (r+R)2 ar  (r+R)3
[ u u ou u Ru 3% u®R _Bu du 8%u
?= T |\or) “rrrar Tirr) PR Teeemees o TR - @D
v (au) wv__ du _ __uR  Ju du
T r+R \or (r+R)2 or (r+R)2 9r 3s / _|
So we arrive
2 2
” k (9T R,D [dC R,D [3C 3T
o= \or) T o) T e
S0 r 0 r o0 r or
heat transfer irreversibility mass transfer irreversibility
uy ()2_14 wv__ du __ u?y
2 2 rERor2 R I (R
L e a_u __u 3_u+ u + A _ _Ra? 32”_|_ u?R 3_“+v3_'432_”
2 9ré 3 or ar2
T 144 | \0r r+Rdr  \r+R (rtR)? Ords T (r-R)* 85 © 7 0r ar N (%)
v (BM) 4 du _ _uR  du du
T r+R (r+R)2 or (r+R)% 9r 0s
viscous dissipation irreversibility
2.2
o Bju
T
——
Joule heating irreversibility

The dimensionless form is

n_ L prpen 12
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N =6 e B I~ I+ I
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Note that Br <= ’Z“A}) indicates the Brinkman number, ozl( ATO) the temperature difference parameter,
. . SoonT:

a (: AC) the concentration difference parameter, L* (— %) the diffusion parameter and Ng (— f:ZTO:D)

the entropy generation rate. Also note that R, signifies the gas constant.

6. Results

Here numerical results are opted with the help of Built-in-Shooting technique for the nonlinear differential
system (29)—(32) with boundary conditions (33) and compared the results with Sajid et al. [37] and Saif et al. [38].
Salient characteristics of pertinent flow parameters i.e., K, 8, L1, Nt, Nb, Pr, E{, ki, K, Br and A; against f’ (§),
0E&),d &), Ng(&), Be, CfSReO'5 and Nu,Re 0 are pointed out via Figs. 1-13 and Tables 1-2. Behavior of
relaxation time (A1), Deborah number (8) and velocity slip parameter (L) against Cs;Re 05 i addressed in Table 1.
As anticipated, magnitude of C ¢;Re 05 diminishes against larger values of (1), while it enhances via rising values
of Deborah number. It is also noticed that magnitude of skin friction coefficient remain unchanged versus larger
estimation of velocity slip parameter. Table 2 portrays Ec, Nt and Nb impacts on Nusselt number. Clearly, it is
noticed that Nu,Re =% rises when Ec and Nt are increased whereas it declines against rising values of Brownian
motion parameter. The comparative outcomes of present problem with Sajid et al. [37] and Saif et al. [38] is
pointed out in Table 3. From Table 3, we see that our results are 100% matched with these studies. Fig. 1 portrays
curvature parameter impact versus velocity field. We observed that velocity distribution reveals increasing trend
subject to rising curvature parameter. Mathematically, curvature parameter is the ratio of stretching rate, radius and
kinematic viscosity. Therefore, for larger curvature parameter, the radius of the surface increases due to which more
fluid particles are sticked to the stretchable surface and consequently stretching rate increases. That is why velocity
distribution increases. Fig. 2 exhibits Deborah number influence versus velocity distribution. Clearly, it is remarked
that the velocity distribution displays diminishing trend against higher Deborah number. Deborah number is the

54



M.I. Khan and F. Alzahrani Mathematics and Computers in Simulation 185 (2021) 4761

f'
041\
K=0.05.0.2.0.4. 0.6
03
0.2
L
0.1 O
i 3 3 4 3§ °

Fig. 1. K on f' (§).

combination of retardation time and stretching rate. Therefore, for increasing the values of Deborah number, the
retardation time of the material enhances which affect the velocity as well as the stretching rate of the material.
Thus, velocity field is decreased. Outcome of velocity slip parameter on velocity distribution is highlighted in Fig. 3.
As expected, the curves of velocity distribution dwindles against rising velocity slip parameter. In physical point of
view, the deformation from the curved surface to the flowing fluid partially transfer subject to higher estimations
of velocity slip parameter. Thus velocity distribution decays. Figs. 4 and 5 address Nt and Nb attributes versus
temperature profile. As estimated, temperature profile boosts against rising N¢ and Nb estimations. In physical point
of view, Brownian motion is the random motion of working liquid particles on the surface. This pattern of liquid
particles characteristically comprises of random oscillations in a particle’s position inside a working liquid sub-
domain, tracked by a replacement to another sub-domain. Each replacement is tracked by more oscillations within
the new closed volume. The kinetic energies of the highly dense working liquid particles of molecular random
motions, together with those of molecular vibrations and rotations, add up to the caloric component of the working
liquid internal energy. Due to this fact, the temperature profile boosts. Influence of Prandtl number on temperature
distribution is sketched in Fig. 6. It is inspected that temperature distribution and associated layer thickness declines
versus rising Prandtl number. In fluid dynamics, boundary layer thickness is controlled by Prandtl number. Prandtl
number is ratio of momentum diffusivity to thermal diffusivity. Thus for rising estimations of Prandtl number, the
thermal diffusivity for the working fluid decays due to which temperature distribution diminishes. Fig. 7 reveals
activation energy features versus concentration profile. Since activation energy marvel has a significant impact on
concentration field. In this Fig., we observe that concentration profile rises when activation energy parameter is
enhanced. Physically, the molecules or atoms of the working fluid store more energy through activation energy
parameter and as a result the reaction between the fluid particles and nano-particles gets the higher rates. That is
why the concentration profile boosts. The role of chemical reaction versus concentration profile in Fig. 8. Clearly,
the mass concentration of nanoliquid declines against rising chemical reaction parameter. The concentration profile
for various estimations of curvature parameter is evaluated versus Fig. 9. Here, nanofluid concentration boosts
versus larger curvature variable. Physically, for larger curvature variable, the radius of curved surface upsurge due
to which more fluid particles are sticked and as a result the mass diffusivity increases. Therefore, the concentration
field is augmented. Figs. 10-13 are sketched to see how entropy generation rate and Bejan number affected by
pertinent flow parameter. Figs. 10 and 11 are designed to elaborate variation in N (&) and Be for distinct estimations
of Brinkman number. Here, contrast behavior is remarked for Ng(§) and Be against larger Brinkman number.
Mathematically, Brinkman number is the combination of Prandtl number and Eckert number. Physically, for higher
Brinkman number, the difference between the kinetic energy and boundary layer enthalpy enhances due to which
more disorder occur in the working liquid and as a result entropy rate boosts. Behavior of relaxation time parameter
against Ng(£) and Be are displayed in Figs. 12 and 13. Here, dual behavior of both Ng (&) and Be is noticed against
larger relaxation parameter. Initially both Ng(§) and Be decline versus relaxation parameter and then both profiles
boost against larger relaxation parameter.
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7. Conclusions

In this problem, mathematical modeling is designed for steady magnetized two-dimensional (2D) incompressible
flow of Jeffrey nanofluid subject to curved surface. Velocity slip condition is further imposed on the curved
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stretched boundary. Total entropy generation rate which depends on the velocity, temperature and concentration

fields is obtained via second law of thermodynamics. The dimensional differential equations are altered into the

dimensionless ordinary differential system by using appropriate similarity variables. The salient characteristics
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of flow parameters like curvature parameter, velocity slip parameter, Deborah number, thermophoresis diffusion,
Prandtl number, Brownian motion, chemical reaction, Brinkman number and activation energy are sketched
graphically for entropy generation rate, concentration, temperature and velocity field. It is observed from the
obtained outcomes that the velocity distribution is greatly affected by the curvature parameter. Velocity distribution
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is an increasing function of curvature parameter, while contrast impact is observed for Deborah number and
velocity slip parameter. Temperature and concentration fields are increased versus Brownian motion, thermophoresis
parameter, activation energy and curvature parameter respectively. It is also seen that the magnitude of skin friction
upsurges versus the Deborah number while decays against relaxation time. Nusselt number is increased via larger
Eckert number and declines against thermophoretic parameter.
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Table 1
Examination of skin friction versus relaxation time parameter, Deborah number and
velocity slip parameter.

A B Ly Skin friction
0.2 0.1 0.4 —4.33906
0.3 —4.2951
04 —4.25251
0.2 0.2 —4.34761
0.3 —4.36042
0.1 0.5 —3.02134
0.6 —3.02134
Table 2
Examination of Nusselt number versus Brownian motion, Eckert number and
thermophoresis.
Ec Nt Nb Nusselt number
0.2 0.1 0.5 1.67259
0.3 1.68165
04 1.69071
0.2 0.2 1.56846
0.3 1.47063
0.2 0.6 1.54624
0.7 1.42758
Table 3

Comparison of present work with previous study [37,38] when Ay =8 =L =M =
M=N"=p=p=0.

A 1O = 5O BT fO) = 5 £/0) 381 f7(0) — % f'(0) [Present]

5 0.75781 0.75763 0.75759
10 0.87353 0.87349 0.87351
20 0.93572 0.93561 0.93559
30 0.95694 0.95686 0.95682

Data availability statement
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