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Abstract In this research, the three-dimensional (3D) steady and incompressible
laminar Homann stagnation point nanofluid flow over a porous moving surface is addressed.
The disturbance in the porous medium has been characterized by the Darcy-Forchheimer
relation. The slip for viscous fluid is considered. The energy equation is organized in
view of radiative heat flux which plays an important role in the heat transfer rate. The
governing flow expressions are first altered into first-order ordinary ones and then solved
numerically by the shooting method. Dual solutions are obtained for the velocity, skin
friction coefficient, temperature, and Nusselt number subject to sundry flow parameters,
magnetic parameter, Darcy-Forchheimer number, thermal radiation parameter, suction
parameter, and dimensionless slip parameter. In this research, the main consideration is
given to the engineering interest like skin friction coefficient (velocity gradient or surface
drag force) and Nusselt number (temperature gradient or heat transfer rate) and discussed
numerically through tables. In conclusion, it is noticed from the stability results that the
upper branch solution (UBS) is more reliable and physically stable than the lower branch
solution (LBS).
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Nomenclature

ξU , ξV, velocities in x- and y-directions,
respectively;

α, momentumaccommodation coefficient;
K∗, permeability of porous space;
Kn, Knudsen number;
Λ, mean free path;
M1,M2, slip coefficients in x- and y-directions;
x, y, z, Cartesian coordinates;
u, v, w, velocity vectors;
T∞, ambient temperature;
k∗, mean absorption coefficient;
Q∗, heat generation/absorption coefficient;
β∗, porosity parameter;
Re, Reynold number;
Cf1, Cf2, skin frictions;
Nu, Nusselt number;
νnf , kinematic viscosity;
F

`
Cb

xK
∗ 1

2

´
, coefficient of non-uniform inertia;

T , temperature;
cp, specific heat;
knf , thermal conductivity;
σ∗, Stefan-Boltzmann constant;
uw(x), stretching velocity;
Cb, drag coefficient;
μf , dynamic viscosity;
w0, suction/injection;
Tw, wall temperature;
s, suction/injection variable;
Pr, Prandtl number;
R, radiation number;
A, B, slip parameters in x- and y-directions;
λ, λ1, dimensionless constant parameters;
Q∗, heat generation parameter;
Fx, Fy , coefficients of inertia in x- and y-

directions.

1 Introduction

The concept of boundary layer flows is acknowledged in various fields of applied mathematics,
mechanical and electrical engineering, physics and biomedical and chemical engineering
applications, for example, wires, manufacturing of plastics films, liquid films in concentration
process, crystal growth, continuous filament extrusion from a peroxide, pharmaceutical
industries, windup roll, cooling of an inestimable metallic plate in a cooling bath and so
on. The heat transport has played an important role in the above processes. The rate of
cooling convinces extraordinary towards the superiority of final items with favored attributes.
In addition, the mass transmission is used in various frameworks and techniques that engage he
convective and molecular transport of molecules and atoms. For example, the mass transport
is included in dehydration. The boundary layer flow has gained much attention by linearly
stretched and flat surface of numerous researchers and analysts in the last few couples of years,
which are regarded in Refs. [1]–[5]. These research studies investigate the different physical
characteristic behaviors on the heat transport and liquid flow. Also, the fluid flow with the
boundary layer concept stimulated by a stretched surface encloses the glass fiber, extrusion
process, electronic chips, paper production, crystal growing, and many therein. In 1961,
Sakiadis[6] utilized the concept of boundary layer in axisymmetric flow on continuous sloid
surfaces. After, Crane[7] investigated the fluid flow behavior over a stretchable and flat surface.
Heat and mass transport in electrically conducting flow of viscoelastic material by a vertical
stretched surface with thermo diffusion (Soret and Dufour) effects were scrutinized by Rashidi
et al.[8]. The bibliography on such fruitful and significant flows is moderately massive, and
some research attempts in this direction can be seen in Refs. [9]–[11]. These communications
analyzed the impact of viscous dissipation and heat source/sink, and it is publicized that both
phenomena considerably affect the heat transport rate by augmenting it.

The investigation of stagnation point flows has fascinated the concentration of frequent
analysts and engineers due to its meaningful and considerable applications in industrial and
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mechanical engineering processes. The stagnation point flow is categorized in two types, namely,
axisymmetric and plane stagnation point flows. The laminar flow towards a plane stagnation
point flow was also referred as Hiemenz flow and initially investigated by Schlichting[12].
Behaviors of particle depositions in such kind of framework were explored by Chari and
Rajagopalan[13]. On the other hand, the axisymmetric flow near stagnation point is also
referred as symmetrical radial or impinging jet stagnation flow is analogous in various aspects
to the former framework. In this paper, we will deal with the fluid flow subject to various
flow assumptions and aspects near stagnation point and such fruitful and interesting research
articles are mentioned in Refs. [14]–[20].

This communication interprets the salient characteristics of first-order velocity for
three-dimensional (3D), steady, incompressible, Darcy-Forchheimer Homann stagnation point
nanofluid flow by a moving surface. Also, this work was the extension of Hafidzuddin et al.[14]

with Darcy-Forchheimer porous relation, thermal radiation, and heat generation/absorption
effects. The flow is generated by slip effect and stretching phenomenon, and saturated
through Darcy-Forchheimer relation. The energy equation is organized in the presence of heat
generation/absorption and thermal radiation effect, where these effects play an important role
in the transportation of heat. Dual solutions for the present problem are obtained through
the shooting method (bvp4c). The engineering interests like skin friction and Nusselt number
are calculated numerically in the presence of important flow parameter, and displayed in the
tabular form.

2 Coordinate system and modeling

In this research work, the mathematical modeling is developed for the incompressible, steady,
3D nanofluid flow of viscous material past a moving porous surface with Darcy-Forchheimer
relation and first-order velocity slip. The velocity slip occurs when there is difference between
the velocity of sheet and the adjacent particles which are attached to the sheet. The thermal
radiation occurs when all the particles are heated and starts releasing kinetic energy due to
which particles start vibrating. Such energy formed by this vibration of particles is called
thermal radiation. In the present flow system, we have taken thermal radiation in the flow
direction along the z-axis. The heat source effect is used in the thermal equation to increase
the temperature of the fluid. The flow problem is discussed in semi-infinite domain of Cartesian
coordinates, i.e., in the xy-plane with x- and y-axes aligned along and normal to the striation on
the porous plate. The fluid is placed along the z-axis. Let the plate move out or inside the center
with velocities ξU and ξV respectively in the x- and y-directions. The dimensionless moving
parameter is positive (ξ > 0) when the plate moves away the origin and is negative (ξ < 0)
when the plate moves inside the origin. Figure 1 illustrates for the schematic flow analysis. The
boundary condition v = w0 indicates the mass flux velocity. There are two cases for mass flux
velocity (i) (w0 > 0) suction and (ii) (w0 < 0) injection or known as blowing. Furthermore, the
outer velocities are represented by ue(x) = ax, ve(y) = ay, and we(x) = −2az. In view of above
assumptions, the governing equations for viscous fluid can be addressed as follows[14]:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
+ w

∂w

∂z
= ue

∂ue

∂x
+ νnf∇2u − νnf

K∗ (u − ue) − F (u2 − u2
e), (2)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= ve

∂ve

∂x
+ νnf∇2v − νnf

K∗ (v − ve) − F (v2 − v2
e), (3)
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Fig. 1 Flow geometry

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= we

∂we

∂x
+ νnf∇2w − νnf

K∗ (w − we) − F (w2 − w2
e), (4)

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

1
(ρcp)nf

(
knf +

16σ∗T 3
∞

3k∗
)
∇2T +

Q∗

(ρcp)nf
(T − T∞) (5)

with{
u = uw(x) = ξU + Uslip, v = vw(y) = ξV + Vslip, w = w0, T = Tw at z = 0,

u = ue(x) → ax, v = ve(y) → ay, w = we(z) → −2az, T → T∞ as z → ∞,
(6)

where Uslip and Vslip are defined as

⎧⎪⎨
⎪⎩

Uslip =
2
3

(3 − αl3

α
− 3

2
1 − l2

Kn

)
Λ

∂u

∂z
, Vslip =

2
3

(3 − αl3

α
− 3

2
1 − l2

Kn

)
Λ

∂v

∂z
,

Uslip = M1
∂u

∂z
, Vslip = M2

∂v

∂z
,

in which α, l, Kn, and Λ are defined as momentum accommodation coefficient with 0 � α � 1,
l = min[1/Kn, 1], Kn is the Knudsen number defined as mean free path Λ divided by
a characteristic length for the flow, and Λ is molecular mean free path. For any value
of Kn, l is always between 0 to 1. Also we know that Λ is always positive. So from
all the above values we conclude that M1 and M2 are positive. In the above governing
expressions, x, y, and z indicate the Cartesian coordinates, u, v, and w indicate the velocity
components, ue indicates the free stream velocity, ∇ indicates the operator, νnf indicates the
kinematic viscosity, K∗ indicates the permeability of porous space, F

(
Cb

xK∗ 1
2

)
indicates the

coefficient of non-uniform inertia, T indicates the temperature, cp indicates the specific heat, knf

indicates the thermal conductivity, σ∗ indicates the Stefan-Boltzmann constant, T∞ indicates
the ambient temperature, k∗ indicates the mean absorption coefficient, Q∗ indicates the heat
generation/absorption coefficient, uw(x) indicates the stretching velocity, M1, M2 indicate the
constant slip coefficients, Cb indicates the drag coefficient, μf indicates the dynamic viscosity, w0

indicates the suction/injection, Tw indicates the wall temperature, and a indicates the positive
dimensional constant. Note that z = 0 indicates the plate surface.

Now we have used transformations which are usually utilized for 3D steady incompressible
flow. These transformations are drawn from Blasius equation-first-order boundary layer. There
is little modification in these transformations from basic Blasius equation-first-order boundary
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layer due to the reason that plate moves out or inside the center with velocities ξU and
ξV respectively in the x- and y-directions. We have also considered slip condition, thermal
radiation, Darcy effect, heat generation effect, and stagnation point flow. For these type of
assumption transformations mentioned below are perfect. Consider the following equations[13]:⎧⎪⎨

⎪⎩
u = axf ′(η) + Uh(η), v = ayg′(η) + V k(η), w = −√

aνf(f(η) + g(η)),

η =
√

a

νf
z, θ =

T − T∞
Tw − T∞

.
(7)

In Eq. (7), primes highlight the differentiation subject to η. On the plate surface the normal
component of velocity is w0, therefore, f(0) + g(0) = s, where s = −√

aνf signifies the surface
mass transport variable. There are two cases: (i) s > 0 suction; (ii) s < 0 injection. Without
loss of generality, we arrive f(0) = s and g(0) = 0.

Table 1 Transport characteristics of nanomaterials

Property Nanomaterial

Density ρnf = ρf

`
1 − ϕ + ϕ ρs

ρf

´

Viscosity μnf = μf
(1−ϕ)2.5

Heat capacity (ρcp)nf = (ρcp)f
`
1 − ϕ + ϕ

(ρcp)s
(ρcp)f

´

Thermal conductivity knf
kf

=
ks+2kf−2ϕ(kf−ks)
ks+2kf+2ϕ(kf−ks)

After implementing the transformations, we obtain(μnf

μf

) ( ρf

ρnf

)
f ′′′ + (f + g)f ′′ − f ′2 + 1 − β∗

(μnf

μf

) ( ρf

ρnf

)
(f ′ − 1) − Fx(f ′2 − 1) = 0, (8)(μnf

μf

) ( ρf

ρnf

)
g′′′ + (f + g)g′′ − g′2 + 1 − β∗

(μnf

μf

) ( ρf

ρnf

)
(g′ − 1) − Fy(g′2 − 1) = 0, (9)(μnf

μf

) ( ρf

ρnf

)
h′′ + (f + g)h′ − hf ′ − β∗

(μnf

μf

) ( ρf

ρnf

)
(h) − Fx(λh2 + 2hf ′) = 0, (10)(μnf

μf

) ( ρf

ρnf

)
k′′ + (f + g)k′ − kg′ − β∗

(μnf

μf

) ( ρf

ρnf

)
(k) − Fy(λ1k

2 + 2kf ′) = 0, (11)

( 1
Pr

)( (ρc
p
)f

(ρc
p
)nf

)((knf

kf
+ R

))
θ′′ + (f + g)θ′ + Q

( (ρc
p
)f

(ρc
p
)nf

)
θ = 0 (12)

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(0) = s, g(0) = 0,

f ′(0) = Af ′′(0), g′(0) = Bg′′(0),
h(0) = Ah′(0) + ξ, k(0) = Bk′(0) + ξ,

f ′(∞) → 1, g′(∞) → 1, h(∞) → 0, k(∞) → 0.

(13)

Note that, Pr
(
= (ρcp )fνf

kf

)
indicates the Prandtl number, A

(
= M1

√
a
νf

)
and B

(
= M2

√
a
νf

)
indicate the slip parameters in x- and y-directions, s

(
= −w0√

aνf

)
indicates the suction/injection

parameter, R
(
= 16σ∗T 3

∞
3kfk∗

)
indicates the radiation parameter, λ

(
= U

ax

)
and λ1

(
= V

ay

)
indicate

the dimensionless constants, β∗ (
= νf

K∗a

)
indicates the porosity parameter, Q

(
= Q∗

a(ρcp )f

)
indicates the heat generation/absorption parameter, Re = Uwx

νf
indicates the Reynolds number,

and Fx = Fx and Fy = Fy indicate the coefficients of the inertia porous medium.
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The physical quantities or engineering interest like the skin friction (Cf ) and the Nusselt
number or the temperature gradient (Nu) are defined as⎧⎪⎨

⎪⎩
Cf1 =

τzx

ρf(ax)2
,

Cf2 =
τzy

ρf(ay)2
,

(14)

Nu =
xqw

kf(T − T∞)
, (15)

where τzx, τzy, and qw indicate the shear stresses and heat flux,⎧⎪⎪⎨
⎪⎪⎩

τzx = μnf

(∂u

∂z

)
,

τzy = μnf

(∂v

∂z

)
.

(16)

qw = −knf
∂T

∂z

∣∣∣
z=0

+ OT, (17)

in which OT indicates the thermal radiation term. Finally, one has⎧⎪⎪⎨
⎪⎪⎩

Cf1Re0.5 =
μnf

μf
k′(0),

Cf2Re0.5 =
μnf

μf
f ′′(0),

(18)

NuRe−0.5 = −θ′(0). (19)

3 Stability study

In this section, we checked the dual solutions, i.e., the UBS and the LBS, are stable
or unstable of the flow expressions (8)–(12) through stability study. To start the stability
study, we consider the time dependent state of boundary value problem (1)–(5). Equation (1)
automatically holds and the remaining equations take the following form:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂w

∂z
= ue

∂ue

∂x
+ νnf∇2u − νnf

K∗ (u − ue) − F (u2 − u2
e), (20)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= ve

∂ve

∂x
+ νnf∇2v − νnf

K∗ (v − ve) − F (v2 − v2
e), (21)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= we

∂we

∂x
+ νnf∇2w − νnf

K∗ (w − we) − F (w2 − w2
e), (22)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

1
(ρcp)nf

(
knf +

16σ∗T 3
∞

3k∗

)
∇2T +

Q∗

(ρcp)nf
(T − T∞). (23)

Here, we introduce a new time dependent dimensionless variable[22], i.e., τ = at. The utilization
of new time dependent dimensionless variable which is associated with IVP and is reliable with
the question of which solution will be achieved in physically realizable. Now we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u = ax

∂f

∂η
(η, τ) + Uh(η, τ), v = ay

∂g

∂η
(η, τ) + V k(η, τ),

w = −√
aνf(f(η, τ) + g(η, τ)), η =

√
a

νf
z, θ(η, τ) =

T − T∞
Tw − T∞

, τ = at.

(24)
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Then, Eqs. (20)–(23) are addressed as

(μnf

μf

)( ρf

ρnf

)∂3f

∂η3
+ (f + g)

∂2f

∂η2
− ∂2f

∂η2
+ 1 − β∗

(μnf

μf

)( ρf

ρnf

)(∂f

∂η
− 1

)

− Fx

(∂2f

∂η2
− 1

)
− ∂2f

∂η∂τ
= 0, (25)

(μnf

μf

)( ρf

ρnf

)∂3g

∂η3
+ (f + g)

∂2g

∂η2
− ∂2g

∂η2
+ 1 − β∗

(μnf

μf

)( ρf

ρnf

)(∂g

∂η
− 1

)

− Fy

(∂2g

∂η2
− 1

)
− ∂2g

∂η∂τ
= 0, (26)

(μnf

μf

)( ρf

ρnf

)∂2h

∂η2
+ (f + g)

∂h

∂η
− h

∂f

∂η
− β∗

(μnf

μf

)( ρf

ρnf

)
(h)

− Fx

(
λ

∂2h

∂η2
+ 2h

∂f

∂η

)
− ∂h

∂τ
= 0, (27)

(μnf

μf

)( ρf

ρnf

)∂2k

∂η2
+ (f + g)

∂k

∂η
− k

∂g

∂η
− β∗

(μnf

μf

)( ρf

ρnf

)
(k)

− Fy

(
λ1

∂2k

∂η2
+ 2k

∂f

∂η

)
− ∂h

∂τ
= 0, (28)

( 1
Pr

)( (ρcp)f
(ρcp)nf

)((knf

kf
+ R

))∂2θ

∂η2
+ (f + g)

∂θ

∂η
+ Q

( (ρcp)f
(ρcp)nf

)
θ = 0 (29)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(0, τ) = s, g(0, τ) = 0,
∂f

∂η
(0, τ) = A

∂2f

∂η2
(0, τ),

∂g

∂η
(0, τ) = B

∂2g

∂η2
(0, τ),

h(0, τ) = A
∂h

∂η
(0, τ) + ξ, k(0, τ) = B

∂k

∂η
(0, τ) + ξ,

∂f

∂η
(η, τ) → 1,

∂g

∂η
(η, τ) → 1, h(η, τ) → 0, k(η, τ) → 0 as η → ∞.

(30)

For the steady flow solution, the stability tests f(η) = f0(η), g(η) = g0(η), h(η) =
h0(η), k(η) = k0(η), and θ(η) = θ0(η) accomplish Eqs. (8)–(12). We have[14]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(η, τ) = f0(η) + exp(−γτ)F (η, τ), g(η, τ) = g0(η) + exp(−γτ)G(η, τ),

h(η, τ) = h0(η) + exp(−γτ)H(η, τ), k(η, τ) = k0(η) + exp(−γτ)K(η, τ),

θ(η, τ) = θ0(η) + exp(−γτ)Θ(η, τ).

(31)

In the above expressions, γ indicates the unknown eigenvalue variable, while capital letters
F (η, τ), G(η, τ), H(η, τ), K(η, τ), and Θ(η, τ) are small subject to f0(η), g0(η), h0(η), k0(η),
and θ0(η). The Eigen solutions to Eqs. (25)–(31) give infinite numbers of solutions set dependent
on eigenvalues γ1 < γ2 < γ3 < γ

[14]
4 ; here it is noted that if the smallest γ1 is negative, flow is

unstable, and if the smallest γ1 is positive, flow is stable.
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Invoking Eq. (31) into Eqs. (23)–(30), we have the following linearized forms:

(μnf

μf

)( ρf

ρnf

) ∂3F

∂η3
+ +(F + G)f ′′

0 + (f0 + g0)
∂2F

∂η2
− 2(1 + Fx)f ′

0

∂F

∂η

−
(
β∗

(μnf

μf

)( ρf

ρnf

)
− γ

) ∂F

∂η
− ∂2F

∂η∂τ
= 0, (32)

(μnf

μf

)( ρf

ρnf

)∂3G

∂η3
+ (F + G)g′′0 + (f0 + g0)

∂2G

∂η2
− 2(1 + Fy)g′0

∂G

∂η

−
(
β∗

(μnf

μf

)( ρf

ρnf

)
− γ

)∂G

∂η
− ∂2G

∂η∂τ
= 0, (33)

(μnf

μf

)( ρf

ρnf

) ∂2H

∂η2
+ (f0 + g0)

∂H

∂η
+ (F + G)h′

0 −
(
h0

∂F

∂η
+

∂f0

∂η
H

)

− 2Fx

(
λh0H +

(
h0

∂F

∂η
+ Hf ′

0

))
−

(
β∗

(μnf

μf

) ( ρf

ρnf

)
− γ

)
H − ∂H

∂τ
= 0, (34)

(μnf

μf

)( ρf

ρnf

) ∂2K

∂η2
+ (f0 + g0)

∂K

∂η
+ (F + G)k′

0 −
(
k0

∂G

∂η
+ g′0K

)

− 2Fy

(
λ1k0K +

(
k0

∂G

∂η
+ Kg′0

))
−

(
β∗

(μnf

μf

) ( ρf

ρnf

)
− γ

)
K − ∂K

∂τ
= 0, (35)

( 1
Pr

)( (ρcp)f
(ρcp)nf

)((knf

kf
+ R

))∂2Θ
∂η2

+ (f0 + g0)
∂Θ
∂η

+ (F + G)
∂θ0

∂η

+
(
Q

( (ρcp)f
(ρcp)nf

)
− γ

)
Θ(η, τ) − ∂Θ

∂τ
= 0 (36)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (0) = 0, G(0) = 0,

∂

∂η
F (0) = A

∂2

∂η2
F (0),

∂

∂η
G(0) =

∂2

∂η2
B(0),

H(0) = A
∂

∂η
H(0), K(0) = B

∂

∂η
K(0),

∂

∂η
F (η) → 0,

∂

∂η
G(η) → 1, H(η) → 0, K(η) → 0 as η → ∞.

(37)

Here, we discuss the stability of incompressible and steady state flow by setting τ = 0, and
thus we have F = F0(η), G = G0(η), H = H0(η), K = K0(η), and Θ = Θ0(η) in Eqs. (32)–(36)
to recognize the initial growth or decline of solution to Eq. (31). To test the accuracy of our
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results, we have the following linear eigenvalue problem:(μnf

μf

)( ρf

ρnf

)
F ′′′

0 + (F0 + G0)f ′′
0 + (f0 + g0)F ′′

0 − 2(1 + Fx)f ′
0F

′
0

−
(
β∗

(μnf

μf

)( ρf

ρnf

)
− γ

)
F ′

0 = 0, (38)

(μnf

μf

)( ρf

ρnf

)
G′′′

0 + (F0 + G0)g′′0 + (f0 + g0)G′′
0 − 2(1 + Fy)g′0G

′
0

−
(
β∗

(μnf

μf

)( ρf

ρnf

)
− γ

)
G′

0 = 0, (39)

(μnf

μf

)( ρf

ρnf

)
H ′′

0 + (f0 + g0)H ′
0 + (F0 + G0)h′

0 −
(
h0F

′
0 +

∂f0

∂η
H0

)
− 2Fx

(
λh0H0 +

(
h0F

′
0 + H0f

′
0

))
−

(
β∗

(μnf

μf

)( ρf

ρnf

)
− γ

)
H0 = 0, (40)

(μnf

μf

)( ρf

ρnf

)
K ′′′

0 + (f0 + g0)
∂K

∂η
+ (F0 + G0)k′

0 −
(
k0G

′
0 + g′0K0

)
− 2Fy

(
λ1k0K0 +

(
k0G

′
0 + K0g

′
0

))
−

(
β∗

(μnf

μf

)( ρf

ρnf

)
− γ

)
K0 = 0, (41)

( 1
Pr

)( (ρcp)f(
ρcp)nf

)((knf

kf
+ R

))
Θ′′

0 + (f0 + g0)Θ′
0 + (F0 + G0)

∂θ0

∂η

+
(
Q

( (ρcp)f
(ρcp)nf

)
− γ

)
Θ0(η, τ) = 0 (42)

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F0(0) = 0, F ′
0(0) = AF ′′

0 (0), G0(0) = 0, G′
0(0) = BG′′

0 (0),

H0(0) = AH ′
0(0), K0(0) = BK ′

0(0),

F ′
0(η) → 0, G′

0(η) → 1, H0(η) → 0, K0(η) → 0 as η → ∞.

(43)

For specific ranges of ξ, s, A, and B, the stability investigation of the corresponding
incompressible and steady flow solution f0(η), g0(η), h0(η), k0(η), and θ0(η) is determined
subject to smallest γ1. The range of possible γ1 and the range of possible eigenvalues can
be obtained by fixing F0(η), G0(η), H0(η), K0(η), and Θ0(η). Therefore, we have G′

0(η) → 1
as η → ∞�and for a fixed range of γ�the system of expressions (38)–(42) with new type of
boundary constraint G′′

0 = 1 is tackled.

4 Results and discussion

Here, the 3D steady and incompressible laminar Homann stagnation point nanofluid flow
over a porous moving surface is addressed. The disturbance in porous medium has been
characterized by Darcy-Forchheimer relation. The slip for viscous fluid is considered. The
energy equation is organized in view of radiative heat flux and heat generation absorption
effects which plays an important role in the heat transfer rate. Table 1 highlights the transport
characteristics of nanofluids. The governing flow expressions are first altered into first-order
ordinary ones and then solved numerically by the shooting method (bvp4c). Dual solutions are
obtained. Therefore, the computational outcomes are obtained for the nonlinear ordianry ones
and Eqs. (8)–(11) subject to boundary constraints (12) utilizing shooting method (bvp4c). To
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validate the accuracy of the obtained outcomes, f ′′(0) and g′(0) are compared with the results
of Wang[21] in Table 2, and good analysis with them is found. All the nonlinear ordinary ones
are coupled, and thus tackled simultaneously. Here, we take the value of η∞ between 4 and 10.

Table 2 Comparison and relative error of f ′′(0) and g′(0) with well-organized results of Wang[21]

subject to A = B in limiting case

A B Present result Wang[21] Relative error

0
f ′′(0) 1.311 938 1.311 938 0.000 0
g′(0) –0.938 73 –0.938 73 0.000 0

0.5
f ′′(0) 0.866 88 0.866 88 0.000 0
g′(0) –0.749 87 –0.749 87 0.000 0

1.0
f ′′(0) 0.617 30 0.617 30 0.000 0
g′(0) –0.564 53 –0.564 53 0.000 0

Salient characteristics of the surface drag forces, i.e., f ′′(0) subject to rising values of
porosity parameter and Darcy-Forchheimer number in the x-direction and fixing ξ = 1, are
scrutinized in Table 3. As anticipated, the magnitude of drag force declines versus these
variables. Various variations of Nusselt number, i.e., θ′(0) versus rising estimation of thermal
radiation and heat generation/absorption, are illustrated in Table 4. Here, it is noticed from
Table 4, that both the UBS and the LBS decrease versus generation/absorption parameter
while for radiation parameter both the UBS and the LBS show contrast impact. The UBS
decreases versus radiation parameter while the LBS increases via this variable. Figure 1 is
captured for the physical interpretation of schematic flow analysis. Figures 2 and 3 are organized
to check how the velocity components affects versus higher values of magnetic parameter
(M = 0.1, 0.2, 0.3). As anticipated, both solutions are declined via rising magnetic parameter.
Through stability examinations, the UBS is more reliable and stable than the lower branch
solution. Physically, the curves of velocity components declines due to Lorentz force, which
is resistive force to the motion of the fluid particles. That is why velocity declines. Figures 4
and 5 are captured to examine the behavior of porosity variable (β∗ = 0.00, 0.05, 0.10) on
the velocity components i.e., f ′(η) and g′(η). Again, both solutions, i.e., the UBS and the
LBS are decreased against larger porosity parameter. In physical point of view, larger porosity
variable generates more resistive force to the motion of the material particles and as a results the
velocity of the material particles are disturbed greatly by larger porosity parameter. Effects of
Darcy-Forchheimer number (Fx = 0.00, 0.05, 0.10) on the velocity components are developed
in Figs. 6 and 7. Here, it is noticed from Fig. 6 that both the UBS and the LBS predict
contrast impact against larger Forchheimer number. The UBS diminishes while the LBS boosts
via rising Darcy-Forchheimer number. Also, it is remarked that the layer shows dual impact
versus Darcy-Forchheimer number. But, in Fig. 7, both the UBS and the LBS decay versus
larger Darcy-Forchheimer number. Furthermore, axial velocity fields, i.e., h(η) and k(η) versus
second-order slip parameter and moving variables ξ = 0.5 and ξ = −0.5 when s = 0.5 and
A = 0.1, are highlighted in Figs. 8 and 9. Clearly, both Figs. 8 and 9 depict that the increase
of second-order slip parameter causes the decline in boundary layer thinness, and therefore,
boosts the velocity gradient. Figures 10 and 11 describe the thermal fields versus higher
estimation of radiation parameter (R = 0.1, 0.3, 0.5) and heat generation/absorption parameter
(Q = 0.3, 0.6, 0.9). For rising estimations of radiative parameter and heat generation parameter,
the thermal field and associated layer are gradually boosts against these parameters. The mean
absorption coefficient decays versus larger radiation parameter, and as a result the temperature
field increases. The same influence on the thermal field is observed in Fig. 11. As anticipated,
both the thermal field and layer thickness decay rising radiation and heat generation parameters.
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Table 3 Results of skin friction coefficient for both the UBS and the LBS subject to β∗ and Fx

β∗ Fx UBS LBS

0.0 0.05 1.265 7 –0.194 4

0.05 1.237 5 –0.110 1

0.1 1.210 2 –0.030 9

0.05 0.0 1.258 5 –0.104 8

0.05 1.237 5 –0.110 1

0.1 1.217 7 –0.115 6

Table 4 Results of Nusselt number for both the UBS and the LBS subject to Q and R

Q R UBS LBS

0.01 0.5 1.029 4 0.163 3

0.02 1.023 5 0.129 1

0.03 1.017 5 0.092 6

0.01 0.5 1.029 4 0.163 3

1.0 0.979 0 0.170 1

1.5 0.935 9 0.175 1

η

η

Fig. 2 Velocity behavior f ′(η) versus M
(color online)

η

η

Fig. 3 Velocity behavior g′(η) versus M
(color online)

η

η

β

Fig. 4 Velocity behavior f ′(η) versus β∗

(color online)
Fig. 5 Velocity behavior g′(η) versus β∗

(color online)
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η

η

Fig. 6 Velocity behavior f ′(η) versus Fx

(color online)

η

η

Fig. 7 Velocity behavior g′(η) versus Fx

(color online)

η

η

ξ ξ

Fig. 8 Axial velocity h(η) versus B (color
online)

η

η

ξ ξ

Fig. 9 Axial velocity k(η) versus B (color
online)

η

θ
η

Fig. 10 Temperature field θ(η) versus R
(color online)

η

θ
η

Fig. 11 Temperature field θ(η) versus Q
(color online)

5 Conclusions

In this research, the 3D incompressible, steady, and saturated flow of viscous fluid by a
moving surface is addressed in the presence of Darcy-Forchheimer porous relation, thermal
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radiation, first- and second-order velocity slips, and heat generation/absorption effects. The
governing flow expressions are first altered into first-order ordinary ones and then numerically
solved versus the shooting method (bvp4c). Some valuable and important results are
summarized as follows.

(i) The UBS is more reliable and stable than the LBS.
(ii) The velocity field declines for both solutions, i.e., the UBS and the LBS versus the

porosity parameter, the Darcy-Forchheimer number, and the magnetic parameter.
(iii) The temperature distribution is more higher for both the UBS and the LBS against the

radiation parameter and the heat generation/absorption parameter.
(iv) The skin friction decays more earlier against the larger Darcy-Forchheimer number and

the porosity parameter.
(v) The heat transfer rate (Nusselt number) boosts against the higher estimations of

radiation for the LBS case and declines against the heat generation/absorption parameter for
the UBS case.
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