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A B S T R A C T   

Present communication explores the multi-phase flow of non-Newtonian fluid with heat transfer through a 
horizontal channel. Jeffrey fluid is considered as the base liquid which suspends metallic particles of Hafnium 
(Hf). Heating effects have been applied on the upper wall. The magnetic field, along with radiative heat flux, has 
also been taken into account. Three different particulate flows, namely; (i) pressure-driven multi-phase flow, (ii) 
moving wall-driven multi-phase flow and, (iii) pressure and moving wall driven multi-phase, are derived. A 
closed-form solution for each bi-phase flow is achieved and compared. The impacts of most significant emerging 
parameters, on velocity and temperature profile, are observed graphically. It is inferred that more thermal energy 
adds to the system friction force and viscous dissipation, whereas, heat transfer rate increases due to radiation. 
The momentum of multi-phase flow enhances due to shear thinning effects caused by Jeffrey fluid parameter.   

1. Introduction 

Non-Newtonian fluids are always problematic to be predicted with 
the help of Navier Stokes equations, because of extremely non-linear 
relation between applied stresses and strain. Some familiar examples 
of such fluids are oils and paints, blood, gels, and adhesives etc. Several 
mathematical models have been derived to analyze such complex fluids 
and, Jeffrey fluid model is one of such fluids. It is a famous viscoelastic 
non-Newtonian fluid, which helps explain the performance of retarda-
tion and relaxation times. There are two parameters λ̂1 and λ̂2in Jeffery 
fluid tensor in which λ̂1 describes retardation time and λ̂2 is a ratio 
between retardation time to relaxation time. Because of viscoelastic 
properties, Jeffrey fluid has numerous applications in polymer pro-
ductions. The exclusive uses of Jeffrey fluid in industries seek the 
intention of researchers; that’s why many studies based on different 
geometries of Jeffrey fluid have been presented from the last few de-
cades [1–5]. 

Ramesh [6] investigated the Jeffrey fluid and pointed out the joule 

heating and viscous dissipation effects. He discussed plane Couette flow, 
generalized Couette flow, and plane Poiseuille flow and presented the 
exact solution under the impact of boundary slip conditions. The MHD 
Jeffrey nanofluid examined by Abbasi et al. [7]. The result of this study 
revealed that Jeffrey fluid model gives large values of Sherwood and 
Nusselt numbers than the viscous fluid. The effects of heat generation 
and thermal radiation on the hydromagnetic 3-D flow of Jeffrey fluid 
explored by Shehzad et al. [8]. They picked the homotopy analysis 
method to solve governing equations and interpret the impacts of all 
concerned parameters. Turkyilmazoglu and Pop [9] presented the 
analytical solutions for mass and heat transmission of Jeffrey fluid. They 
concluded that the Prandtl number affects the temperature distribution, 
and Deborah’s number affects flow distribution. Ellahi et al. [10,11] 
have obtained exact, and closed-form solutions for Jeffrey fluid flow. 
Nano flow is analyzed in a catheterized tapered artery while a rectan-
gular duct is used for the peristaltic transport of Jeffrey fluid. The results 
interpreted that the thermal radiation parameter accelerates the tem-
perature of the liquid and also increases boundary layer thickness. 

Multi-phase flows of Newtonian and non-Newtonian fluids are of 
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great significance. Many natural flows are solely a liquid flow but 
comprise different kinds of solid or air particles. The most common 
natural flows are floods, avalanche and granular flows etc. Mubbashar 
et al. [12] is a comparative study of non-Newtonian multi-phase flows. 
Fourth-grade fluid model is used to make suspension with Hafnium and 
crystal particles. Supercritical flows are investigated and compared. 
Zeeshan et al. [13] considered tiny for the two-dimensional flow of 
Couples stress fluid over a paraboloid of revolution. The heat and mass 
transfer through the base liquid is investigated numerically. Ellahi et al. 
[14] examined the two-phase Couette flow of Couple stress fluid. Uni-
form magnetic field is applied, which hinders the flow Hafnium sus-
pended flow. Zeeshan et al. [15] analyzed the gravity-driven flow of 
Couple stress fluid. Closed-form solutions are obtained for Magnetohy-
drodynamic (MHD) of bi-phase flows. Similarly, in [16] authors have 
presented analytical solutions for two different types of multi-phase 
flow. They used a regular perturbation method to explore the flow dy-
namics of Third-grade bi-phase flows. 

Heat and mass transfer is a vital mechanical phenomenon. The 
transmission properties of heat and mass transfer through tangent hy-
perbolic nanofluid are discussed by Atif et al. [17]. Peristaltic transport 
to Rabinowitsch fluid with heat transfer incorporated with radiative 
heat flux is reported by Chu et al. [18]. Flow is generated by the walls 
furnished with cilia structure while the thermal effects attenuate the 
liquid’s viscosity. A numerical scheme is taken into account for the 
non-linear differential equations subject to convective boundary con-
ditions. Numerical and analytical solutions are obtained and compared 
for Third grade fluid in [19]. Heat transfer is investigated through a 
porous channel by using thermal and velocity slip conditions. Numerical 
simulation is carried out by Ellahi et al. for two-phase flow in [20]. 
Lubrication effects are employed on the wall to reduce the roughness of 
the surface. Bhatti et al. [21] investigated the heat transfer effects during 
motion of solid particles through the channel. They have used the 
shooting technique to solve the complex non-linear problem. They 
presented their solutions by sketching graphs for temperature and ve-
locity fields. Some more work related to the current study can be seen by 
Ref [22–28]. 

Three fundamental bi-phase flows of excellent mechanical and in-
dustrial significance are addressed in this article. Jeffrey fluid suspended 
with metallic particles have not been reported, yet in the existing 
literature. In addition to this, heat transfer with the contribution of ra-
diation on multi-phase flow is theoretically modeled, for the first time. 

2. Mathematical analysis 

Consider a two-phase flow of non-Newtonian fluid with heat transfer 
in a horizontal channel. Jeffrey fluid is considered as the base liquid 
suspended with metallic Hafnium particles. A uniform magnetic field is 
applied in the transverse direction of the walls which are k̂ =

±ĥdistance away from each other. The lower and upper plates of the 
channel are maintained at a temperature T̂0andT̂1, respectively. 

Let V̂
f̂
= (0, û

f̂
(k̂),0), V̂ p̂ = (0, û p̂(k̂),0)be the fluid phase and the 

particle phase velocities, respectively for an MHD two-phase flow with 
the contribution of radiative heat flux. Then the set of equations for an 
MHD heated two-phase Jeffrey-Hafnium flow are given as: 

2.1. Fluid phase equations 

Equations for the conservation of mass for the fluid phase is 

∇.V̂
f̂
= 0. (1) 

Conservation of linear momentum the fluid phase is 

−
(

1 − Ĉ
)
∇p̂ +

(
1 − Ĉ

)
∇. ŝ − ŝ Ĉ

(

V̂ p̂ − V̂
f̂

)

+ Ĵ × B̂

= ρ̂
f̂

(
1 − Ĉ

)DV̂
f̂

Dt̂
. (2)  

2.2. Particle phase equations 

Equations for Conservation of mass is 

∇.V̂ p̂ = 0. (3) 

The equation for the linear momentum of particle-phase [29] is 

⌢
ρ ⌢

p

⌢
C

D⌢
V ⌢

p

D ⌢
t
= −

⌢
C

∇
⌢
p
+

⌢
S

⌢
C

(
⌢
V ⌢

p

−
⌢
V ⌢

f

)

. (4)  

2.3. Heat transfer equation 

The equation which describes the heat transfer of the multi-phase 
flow of Jeffrey fluid incorporated with thermal radiation effects is 
given as 

Nomenclature 

ĥ Distance between plates 
T̂0 Lower plate temperature 
λ̂1, λ̂2 Jeffrey fluid parameters 
M̂ Hartmann number 
γ̇ Deformation tensor 
û

f̂ 
The dimensional velocity of fluid phase 

u*
f The dimensionless fluid phase velocity component 

μ̂ ŝ Dimensional viscosity of the solid-liquid 

T̂ The dimensional temperature of the fluid 
p̂ Dimensionless pressure gradient parameter 
B̂ r̂ Brinkman number 
μ The viscosity of the base liquid 
σ̂ Electrical conductivity 
Ĉ Concentration of particles 
U Velocity of moving wall 

B̂ Total Magnetic field 
T̂1 Upper plate temperature 
ρ̂

f̂ 
Density of fluid 

ŝ Jeffrey stress tensor 
γ̈ Substantial derivative 
û p̂ The dimensional velocity of particle phase 

u*
p The dimensionless particle-phase velocity component 

μ*
s Dimensionless viscosity of Fluid 

T* The dimensionless temperature of the fluid 
Ĉ p̂ Specific heat 

R̂
d̂ 

Radiation parameter 

ŝ Coefficient of drag force exerted by particles 
B0 Magnetic strength 
k* Dimensionless thermal conductivity 
S Drag coefficient  
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ρ̂
f̂

(

Ĉ p̂

)

f̂

DT̂
Dt̂

= ∇⋅ k̂∇T̂ + μ̂ ŝ ϕ̂ −
q̂ r̂

∂k̂
, (5) 

In above one can identifyϕ̂ = tr(ŝ⋅L⌢). Here, ̂s as extra stress tensor 
for the Jeffrey fluid and L is Rivlin-Ericksen tensor 

ŝ =
μ̂ ŝ

1 + λ̂1

(
γ̇ + λ̂2γ̈

)
. (6) 

The deformation tensor γ̇ and substantial derivative γ̈ are given by 

γ̇ = L⌢ + L⌢ T̂ . (7)  

γ̈ =
dγ̇
dt̂

=
∂γ̇
∂̂t

+
(

V̂.∇
)

γ̇. (8) 

With the assumption of unidimensional flow, it is obtained 

L⌢ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
∂û

f̂

∂k̂
0

0 0 0

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(9) 

The current vector Ĵ can be defined as 

Ĵ = σ̂
(

Ê + V̂ × B̂
)
, (10) 

In the absence of applied electricity and considering the influence of 
transverse magnetic field such that B̂ = (0,B0,0).Then above equation 
becomes 

Ĵ × B̂ =

(

− σ̂B0
2 û

f̂
, 0, 0

)

(11) 

Invoking the velocity components of both phases and performing 
essential mathematical manipulation, then the main governing equa-
tions in components form are given as 

∂û
f̂

∂x̂
= 0. (12)  

∂
∂k̂

⎛

⎝
μ̂ ŝ

1 + λ̂1

∂û
f̂

∂k̂

⎞

⎠ −
ŝ Ĉ

(
1 − Ĉ

)

(

û p̂ − û
f̂

)

−
σ̂ B̂0

2
û

f̂(
1 − Ĉ

) =
∂p̂
∂x̂

. (13)  

∂μ̂ p̂

∂x̂
= 0. (14)  

− Ĉ
∂p̂
∂x̂

+ ŝ Ĉ
(

û p̂ − û
f̂

)

= 0, (15)  

∂
∂ ⌢

y

⎛

⎝⌢
k

∂ ⌢
T

∂ ⌢
y

⎞

⎠+

⌢
μ ⌢

s

1 + ⌢
λ 1

⎛

⎝
∂⌢

u ⌢
f

∂ ⌢
y

⎞

⎠

2

+
16σ*

3k1

∂2⌢
T

∂⌢
y

2 = 0. (16) 

To normalize the flow dynamics, we define the following dimen-
sionless variables and quantities:   

Using Eq. (17) in Eqs. (12)–(16), we get the following dimensionless 
equations: 

∂u*
f

∂x* = 0, (18)  

∂u*
p

∂x* = 0, (19)  

∂
∂y*

⎛

⎝ μ*
s

1 + λ̂1

∂u*
f

∂y*

⎞

⎠ −
Ĉ

m⌢
(

1 − Ĉ
)
(

u*
p − u*

f

)
−

M̂
2

(
1 − Ĉ

)u*
f + p̂ = 0, (20)  

u*
p − u*

f = − m⌢ p̂, (21)  

∂
∂y*

(

k*∂T*

∂y*

)

+
μ*

s

1 + λ̂1
B̂ r̂

(∂u*
f

∂y*

)2

+ R̂
d̂

∂2T*

∂y*2 = 0. (22)  

3. Source of thermal radiated multi-phase flow 

Three most famous sources are taken into account, which causes 
fundamental multi-phase flows with heat transfer: 

3.1. Pressure driven multi-phase flow 

It is considered that multi-phase flow with heat transfer is mainly, 
due to the contribution of the constant pressure gradient. This can only 
be achieved when both walls of the channel are at a stationary position, 
as shown in Fig. 1. Using Eq. (21) in Eq. (20) yields and performing 
necessary manipulation in Eq. (22) leads the following set of equations 

∂2u*
f

∂y*2 −
M̂

2(
1 + λ̂1

)

1 − Ĉ
u*

f +
p̂
(

1 + λ̂1

)

1 − Ĉ
= 0. (23)  

(

1+ R̂
d̂

)
∂2T*

∂y*2 +
B̂ r̂

1 + λ̂1

(∂u*
f

∂y*

)2

= 0. (24) 

Dimensionless boundary conditions are: 

u*
f (y

* = − 1) = 0, u*
f (y

* = 1) = 0. (25)  

T*(y* = − 1) = 0, T*(y* = 1) = 1. (26)  

3.2. Moving wall driven multi-phase flow 

Now, it is considered that heated multi-phase flow between flat 
plates is due to the motion of the upper wall, which moves with the 
constant velocity U, depicted in Fig. 2. On the other hand, the contri-
bution of a constant pressure gradient is a negligible and lower plate of 
the channel is still at rest. In view of the above assumptions, the mo-
mentum equation along with the boundary condition in the dimen-
sionless form is 

u*
f =

⌢
u ⌢

f

U
,u*

p=

⌢
u ⌢

p

U
,μ*

s =

⌢
μ ⌢

s

μ0
, y*=

⌢
y
⌢
h
, x*=

⌢
x⌢
h
,k*=

⌢
k
k0
,p*=

⌢
h

⌢
p

μ0U
,T*=

⌢
T
−

⌢
T 0⌢

T 1
−

⌢
T 0

,⌢
P
=−

∂p*

∂x* ,
⌢
M

=

̅̅̅̅̅̅⌢
σ
μ0

√
√
√
√ ⌢

h
⌢
B 0

,m=
μ0

⌢
h

2⌢
S

,
⌢
B ⌢

r

=
μ0U2

k0

(
⌢
T 1

−
⌢
T 0

),
⌢
R ⌢

d

=
16σ*

3k1k0
(17)   
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∂2u*
f

∂y*2 −

(
1 + λ̂1

)
M̂

2

1 − Ĉ
u*

f = 0, (27)  

u*
f (y

* = − 1) = 0, u*
f (y

* = 1) = 1. (28) 

However, the thermal equation, along with the boundary conditions, 
will not be disturbed. 

3.3. Pressure and moving wall driven multi-phase flow 

Many mechanical multi-phase flows obey the mechanism moving 
wall and constant pressure gradient. In this connection, it is assumed 
that the bi-phase flow of Jeffrey fluid with heat transfer is due to the 
upper moving wall incorporated with constant pressure gradient to be 
seen in Fig. 3. 

4. Method of solution 

4.1. Pressure driven multi-phase flow 

One can see that Eqs. (23) and(24) are linear and coupled differential 
equations. So, an exact solution subject to boundary conditions Eqs. (25) 
and (26) is achieved. Then velocity and thermal transport of fluid phase 
is given as 

u*
f = A1

⎛

⎝cosh

⎛

⎝M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y* + sinh

⎛

⎝M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y*

⎞

⎠

+A2

⎛

⎝cosh

⎛

⎝M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y* − sinh

⎛

⎝M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y*

⎞

⎠+
p̂

M̂
2

, (29)  

Fig. 1. Geometry of plane Poiseuille flow.  

Fig. 2. Geometry of plane Couette flow.  

Fig. 3. Geometry of generalized Couette flow.  
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T* = B10 + y*B11 + B12y*2
+ B13cosh

⎛

⎝2M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y*

+ B14sinh

⎛

⎝2M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y*. (30)  

Where, A1,A2,B10,B11, B12 and B14 etc. are some constants which can 
be determined by following routine calculations given in the appendix. 

4.2. Moving wall driven multi-phase flow 

The momentum of two-phase Jeffrey fluid which transfer heat under 
the effects of radiation are: 

u*
f = A3

⎛

⎝cosh

⎛

⎝M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y* + sinh

⎛

⎝M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y*

⎞

⎠

+A4

⎛

⎝cosh

⎛

⎝M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y* − sinh

⎛

⎝M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y*

⎞

⎠

, (31)  

T* = B20 + y*B21 + B22y*2
+ B23cosh

⎛

⎝2M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y*

+ B24sinh

⎛

⎝2M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y*. (32)  

4.3. Pressure and moving wall driven multi-phase flow 

u*
f = A5

⎛

⎝cosh

⎛

⎝M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y* + sinh

⎛

⎝M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y*

⎞

⎠

+A6

⎛

⎝cosh

⎛

⎝M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y* − sinh

⎛

⎝M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√

⎞

⎠y*

⎞

⎠+
p̂

M̂
2

(33)  

T* = B30 + B31y* + B32y*2
+ B33cosh

⎡

⎣2M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√ y*

⎤

⎦

+ B4sinh

⎡

⎣2M̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 + λ̂1

)

(
1 − Ĉ

)

√
√
√
√
√ y*

⎤

⎦. (34)  

5. Results and discussion 

The physical interpretation of the results is elaborated in this section. 
Figs. 4 to 18 are sketched to capture the variations in velocity and 
temperature distribution for various emerging parameters, namely 
Hartmann number(M̂), metallic particle concentration(Ĉ), non- 
Newtonian parameter or Jeffrey fluid parameter(λ̂1), Radiation 
parameter (R̂

d̂
) and Brinkman number(B̂ r̂ ). A detailed discussion is 

made based on three multi-phase flows which cause the heat transfer has 
been elaborated in segregated subsections: 

5.1. Pressure driven multi-phase Flow 

Figs. 4 to 8 are prepared to examine the different emerging param-
eters effects on the Jeffrey-Hafnium bi-phase flow and temperature 
profile. Fig. 4 shows variations inflow for different values of Hartmann 
number. The diagram depicts that bi-phase flow gradually reduces its 
momentum. It holds physically as an increase in values of Hartmann 
number yields enhancement in Lorentz force. Lorentz force introduces a 
resistive force which hampers the fluid flow. Therefore, the velocity field 
decreases. Fig. 5 exhibits the variations in flow for metallic particle 
concentration. It is noticed that the addition of metallic particles in the 
base fluid increases the momentum of multi-phase flow as predicted in 
[19] for non-Newtonian fluid bi-phase flow. Similarly, the velocity of 
fluid enhances subject to Jeffrey fluid parameter in Fig. 6. Higher values 
in non-Newtonian fluid parameter cause shear-thinning effects. In 
addition to this, heating effects at the upper wall, further, attenuates the 
viscosity of the base liquid. Therefore, velocity increases during the 
process. Effects of radiation on thermal profile are shown in Fig. 7. The 
radiation parameter defines the relative contribution of conduction heat 
transfer to thermal radiation transfer. It is obvious from that heat 
transfer rate is enhancing, which leads to a decline in thermal profile 
against the dimensionless parameter. Quite the opposite trend in the 
behavior of thermal profile is observed against Brinkman number in 
Fig. 8. The temperature of bi-phase flow increases with respect to 
Brinkman number, which states that viscous dissipation effects are more 
prominent. These effects increase the heat generation within the fluid, 
and hence the temperature of fluid enhances [6]. 

Fig. 4. Variations in flow and temperature for Hartmann number.  Fig. 5. Variations in flow and temperature for metallic particles concentration.  
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5.2. Moving wall driven multi-phase flow 

In Figs. 9–13, we examine the role of emerging parameters on the 
velocity and heat transfer of multi-phase Jeffrey fluid flow which caused 
by merely, due to the constant motion of the upper heated wall. Fig. 9 is 
plotted versus Hartmann number. The variation of magnetic field in-
tensity resists the motion of the Jeffrey-Hafnium flow. This reduction in 
the velocity is caused by the factor which is stated in the previous case. 
Unlike, the pressure-driven multi-phase flow the velocity declines for 
Jeffrey fluid parameter. From Fig. 10, it is observed that by increasing 

the non-Newtonian parameter velocity decreases. Contribution of 
Hartmann number is given in Fig. 11. It is evident from the fact that 
increase in Hartmann number reduces the velocity of the fluid. This 
retardation increases the force of friction between fluid particles and 
fluid layers which adds more energy in the system. It is very interesting 
to note that the effects of Hartmann number on thermal profile are only, 
significant and evident near the upper wall. However, the overall 
behavior of Brinkman number and radiation parameter on temperature 
is the same as for the previous case, as shown in Figs. 12 and Fig. 13, 
respectively. 

Fig. 6. Variations in flow and temperature for the non-Newtonian parameter.  

Fig. 7. Variations in temperature for Radiation parameter.  

Fig. 8. Variations in temperature for Brinkman number.  

Fig. 9. Variations inflow for Hartmann number.  

Fig. 10. Variations in flow and temperature for the non-Newtonian parameter.  

Fig. 11. Variations in flow and temperature for Hartmann number.  
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5.3. Pressure and moving wall driven multi-phase flow 

Finally, this portion describes the velocity and thermal behavior of 
pressure and moving wall driven multi-phase flow in Figs. 14–18. Fig. 14 
shows variations in fluid velocity against Hartmann number. Base liquid 
reduces in momentum as Hartmann number is enhanced. On the con-
trary, fluid velocity increases Fig. 15 as the additional metallic particles 
are incorporated. Similarly, the flow of bi-phase flow speeds up as the 
Jeffrey fluid parameter is varied in Fig. 16. Increase in non-Newtonian 
parameter brings shear-thinning effects which allow fluid to move 

fast. Finally, energy gradually expunges for an increase in radiation 
parameters, as shown in Fig. 17. Nonetheless, temperature profile in-
creases due to with respect to increasing the Brinkman number in 
Fig. 18. 

6. Concluding Remarks 

Two-phase flows of non-Newtonian fluid with heat transfer through 
the horizontal channel are investigated. Jeffrey fluid is taken as a base 

Fig. 12. Variations in temperature for Brinkman number.  

Fig. 13. Variations in temperature for Radiation parameter.  

Fig. 14. Variations in flow and temperature for Hartmann number.  

Fig. 15. Variations in flow and temperature for metallic particles 
concentration. 

Fig. 16. Variations in flow and temperature for the non-Newtonian parameter.  

Fig. 17. Variations in temperature for Radiation parameter.  
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liquid which suspended with spherical Hafnium particles. The magnetic 
field in transverse direction is applied along with the impact of radia-
tion. An exact solution is obtained for each multi-phase flow. A detailed 
parametric study is carried out, and the main outcomes of this investi-
gation are:  

• The momentum of multi-phase flow decreases in each case against 
the Hartmann number.  

• Jeffrey fluid parameter has a different impact on the velocity of base 
fluid for wall driven multi-phase flow.  

• The radiation parameter declines temperature distribution for all 
types of flow.  

• More energy adds to the system due to the Brinkman number.  
• Jeffrey multi-phase flow reduces back to Newtonian multi-phase for 

λ̂1→0.
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Fig. 18. Variations in temperature for Brinkman number.  
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