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Abstract
Intention here is to discuss the physical features of MHD stagnation point flow of Williamson
nanomaterial over a stretched surface. Cattaneo-Christov Double Diffusion (CCDD) concept is
incorporated to deliberate the behaviors of mass and heat transfer rates. These models are based
upon Fick’s and Fourier’s laws versus solutal and thermal relaxation times. Innovative
characteristics regarding thermophoresis and Brownian diffusion effect are also scrutinized.
Relevant transformations are used to reduce the nonlinear expression to ordinary one.
Convergent solution by optimal homotopy analysis technique (OHAM) is constructed. The
average residual error is computed through OHAM Discussion is arranged for velocity,
concentration and temperature. Skin friction co-efficient, temperature gradient and mass transfer
rate are graphically discussed. Velocity boosts up significantly via velocity ratio parameter.
Temperature and velocity have opposite effects for Weissenberg number. Concentration of the
material particles increases against larger estimations of thermal relaxation time.

Keywords: Williamson fluid model, Cattaneo-Christov double diffusion (CCDD), porous
medium, viscous dissipation, magnetohydrodynamics, Brownian and thermophoresis diffusions

(Some figures may appear in colour only in the online journal)

1. Introduction

The applications of heat and mass transportation is increased
recently due to various industrial and engineering processes,
like heat exchanger, refrigeration, biomedical applications, air
conditioning, food processing, damage of crops etc. Until
now numerous investigators for mass and heat, transportation
used convectional transport theories. Such theories are not
reliable because of infinite speed of wave transmission. To
overcome such inefficiency the solutal and thermal relaxation
times are invoked. Initially, Cattaneo [1] made a development
in Fourier’s law by addition of thermal relaxation time and
thus heat is conveyed in realistic pattern. Cattaneo-Christov

mass and heat flux model was modified to scrutinize the
behavior of thermal and solutal aspects in heat and mass
transfer. Recently, various investigators developed Fick’s and
Fourier’s laws to discourse stress relaxation in concentration
and temperature distributions. Impact of variable thermal
conductivity on Maxwell liquid flow with Cattaneo-Christov
heat flux by a stretching sheet is explored by Hayat et al [2].
In this research work, they used Cattaneo-Christov heat flux
instead of Fourier’s law of heat conduction. The nonlinear
flow equations are first altered into ordinary ones and then
series solutions are obtained by the help of homotopy analysis
method. The salient behavior of heat source/sink in Wil-
liamson nanofluid flow is exemplified by Khan et al [3]. The
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flow phenomenon is carried out over an oscillatory stretched
surface. Furthermore, heat source/sink and convective
boundary conditions for both heat and mass transport are
implemented at the boundary. Their results indicated that
the heat transfer rate is more subject to the insertion of
nanoparticles. Zhang et al [4] reported the effect of relaxa-
tion-retardation dissipation in time dependent Oldroyd-B
liquid flow with Cattaneo-Christov mass and heat fluxes. In
this work, they discussed the thin film liquid flow towards a
time dependent stretched surface. Furthermore, the energy
equation is discussed and developed in the presence of vis-
cous dissipation and CCDD theory. The nonlinear governing
expressions are tackled by a new well-organized analytical
technique called Double Parameter Transformation Expan-
sion Method. Their valuable outcomes highlights that film
thickness boosts versus higher values of unsteadiness para-
meter in case β2>β1 while it thickness decrease for β2<β1.

Cattaneo-Christov double diffusion in squeezing the flow of a
viscous fluid with concentration dependent mass diffusivity in
a Darcy medium is highlighted by Farooq et al [5]. In this
research work, Farooq et al again discuss the Cattaneo-
Christov theory in fluid flow, but this time they used
squeezing flow instead of steady flow and the results are
calculated via same method as discussed in Ref. [2]. Waqas
et al [6] examined the variable thermal conductivity in
Powell-Eyring fluid flow by a stretchable cylinder. In this
research work main consideration is given to the skin friction
coefficient and discussed subject to various embedded

variables. The results interprets that both concentration and
temperature distributions are decreasing functions of con-
centration and thermal relaxation time respectively. Char-
acteristics of Cattaneo-Christov flux in Jeffrey liquid flow of
variable conductivity is examined by Hayat et al [7]. This
work based on the following fourfold (i): Variable thermal
conductivity (ii): Variable thicked surface (iii): Double stra-
tification (iv): Nonlinear stretching phenomenon. Upadhay
et al [8] discussed the Cattaneo-Christov mass and heat fluxes
in time-dependent magnetohydrodynamic Eyring Powell
liquid flow. Their calculated outcomes shows that the beha-
vior of thermal relaxation is more in liquid phase than the dust
phase subject to both PWT and PHF and also prescribed heat
flux case. Hayat et al [9] reported the Jeffrey liquid flow with
Cattaneo-Christov mass and heat fluxes. It is examined that
the curves of velocity field diminishes against higher ratio of
relaxation to retardation time. The temperature field decays
subject to rising thermal relaxation parameter, Prandtl number
and Deborah number. Malik et al [10] discussed the thermal
heat flux in Sisko liquid flow with Cattaneo-Christov double
diffusion. The governing equations are first altered into first
order ordinary ones and then computational results are carried
out through Shooting technique along with Runge–Kutta
method (Fourth order).

Nanomaterial is a nano-size solid particles (1–100 nm)
suspended in traditional fluids [11, 12]. Such liquids possess
higher effect in the growth of pioneering heat conveyance
fluids and extensive attempts was accomplished in this

Figure 1. Flow diagram.
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direction during the last few decades. Nanoliquids have var-
ious applications in different fields of advanced industries,
nano-electronics and nanotechnology containing military
goods, micro manufacturing, desalination of water, micro-
electronic device technologies, carbon nanotubes, nuclear
reactors chilling and silver nanoparticles in food packaging.
Furthermore this modern-day technology is responsible for
new opportunities to enhance the rate of heat conduction in
different industrial processes. The model deliberated by
Buongiorno [13] has achieved more attention subsequently it
importantly describes the conduction mechanism between
base liquid and nanoparticles. The behavior of thermophor-
esis and Brownian diffusion in third grade nanoliquids with
binary chemical reaction is examined by Hayat et al [14].
Some recent attempts which discuss the characteristics of
viscous and non-Newtonian material in fluid flow [15–25].

In the current study, we investigate the behavior of MHD
stagnation point flow of Williamson nanomaterials. Mass
and heat, transportation behaviors are scrutinized through
Cattaneo-Christov mass and heat flux models. These models
are the development of the laws of Fick’s and Fourier’s with a
solutal and thermal relaxation time. The applied magnetic
field is considered. Impact of Brownian movement and ther-
mophoresis are accounted. The transformation procedure
gives rise to an ordinary differential system. For convergent
series solution the system is solved by OHAM [26–30].
Graphical representations for velocity, temperature and con-
centration are discussed. Furthermore, heat transfer rate,
gradient of velocity and concentration gradients are also
examined.

The main goal of the present research work is threefold.
(i) Cattaneo-Christov Double Diffusion (CCDD) modeling
with nanofluid for Williamson fluid is developed. (ii) The
modeling of MHD and nanofluid with CCDD in implicit form
is calculated for such fluid. (iii) Correct form of viscous dis-
sipation and slip mechanisms like Brownian motion and ther-
mophoretic diffusion is introduced first time in the literature.

The remaining manuscript is arranged as: The valuable
review about the topic is displayed in 1, coordinate system
and modeling is highlighted in 2, engineering interest is ela-
borated in 3, solution methodology is presented in 4, conv-
ergence of nonlinear flow expressions is outlined in 5,
discussion of pertinent parameters are discussed and pre-
sented graphically in 6 and the final meaningful remarks are
listed in 7.

2. Formulation

Here the MHD stagnation point flow of Williamson nanoma-
terials towards a stretching surface is considered. Brownian
motion and thermophoresis are addressed. Cattaneo-Christove
mass and heat flux models are used. Stretching surface is parallel
to x−direction. Clearly y−axis is normal to the surface. The
figure 1 depicts the schematic flow diagram of the present
problem.

The magnetic field of constant strength (B0) is exerted.
The Joule heating is ignored in this research work due to
week magnetic force due to which small amount of heat
produced in the working fluid. Therefore, we ignore the Joule
heating effect in the energy equation. Let =u ax denotes
stretching velocity and  =u u bxe the free stream velocity
where the constants a and b has dimensions of 1/time.

The flow, temperature and concentration expressions
satisfy
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Here rf symbolizes the density, u v, the velocity compo-
nents, nf the kinematic viscosity, mf the dynamic viscosity,
x y, the Cartesian coordinates G the Williamson liquid
parameter, cp the specific heat, s the electrical conductivity,
dE the thermal relaxation time, t the ratio between heat
capacities, DB the Brownian movement coefficient, T the
temperature, Tw the wall temperature, ¥T the ambient temp-
erature respectively, k the thermal conductivity, DT the
coefficient of thermophoresis, C the concentration, Cw

the wall concentration, ¥C the ambient concentration and dC

the relaxation time of mass flux.
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5. Convergence analysis

Average squared residual error minimization for convergent
solutions were given by Liao [27]

å åe z=
+

h dh

=

= =
k

N f
1

1
, 25m

f

k

i

f
j

m

i

0

0

2

( ) ( )
⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

å å åe z q z=
+

q
q

h dh= = = =
k

N f
1

1
, , 26m

i

k

j

m

j

m

i0 0 0

2

( ) ( ) ( )
⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

å å å åe z z f z=
+

f
f

h dh

= = = =

=k
N f g

1

1
, , ,

27

m
k

i

m

j

m

j

m

j

i

0 0 0 0
2

( ) ( ) ( )

( )

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

Total squared residual error is [27]:

e e e e= + +q f , 28m
t

m
f

m m ( )

in which em
t denotes total squared residual error.

Graphically, Total squared residual error is calculated in
figure 2. Table 1 is prepared to demonstrate the individual
averaged squared residual errors versus the convergence con-
trol variables.

Table 1 represents the total residual error analysis for the
momentum, temperature and concentration equations. Table 2
highlights the comparative examination of the present out-
comes with Pop et al [28] and Sharma and Singh [27] and
found very interesting similarity results with each other.

6. Discussion

Here we employed OHAM to develop the convergent solu-
tions for nonlinear system. Salient characteristics of velocity,
concentration and temperature are discussed. Surface drag
force, gradient of temperature and heat transfer rate are
numerically calculated.

Figure 2. Total residual error.
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6.1. Velocity field

Salient features of Weissenberg number, magnetic parameter
and velocity ratio parameter or stretching ratio parameter are
scrutinized in figures (3–5). Characteristics of Weissenberg
number on the velocity field is demonstrated in figure 3. It is
seen that an increments in Weissenberg number lead to decay
of velocity. Physically, for rising estimation of Weissenberg
number, the relaxation time of material boosts which resists
the fluid particles motion and as a result velocity of the par-
ticles declines. Figure 4 interpreted the performance of
magnetic parameter on the velocity distribution. Clearly, the

curves of velocity field declines against larger magnetic
parameter. Physically, magnetic field associated with Lorentz
force and for increasing estimation of magnetic parameter the
Lorentz force increasing which resists the fluid velocity
directly. That’s why the velocity field diminishes. Figure 5

Table 1. Numerical iteration for individual averaged squared residual errors.

Table 2. Obtained results accuracy analysis with Pop et al [28] and
Sharma and Singh [27].

A Pop et al [28] Sharma and Singh [27] Present outcomes

0.1 −0.9694 −0.9694 −0.96939
0.2 −0.9181 −0.9181 −0.91811
0.5 −0.6673 −0.6673 −0.66726

Figure 3. Velocity field versus We.

Figure 4. Velocity field versus M.

Figure 5. Velocity field versus A.
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demonstrated the salient aspects of velocity ratio on the
velocity profile. Here, three different cases of boundary layer
exists for the velocity ratio parameter. Case 1: there no
boundary layer formation exists for A=1, because both sheet
and fluid particles moves with the same velocity. Case 2:
when A>1, the sheet and fluid particles moves with different
velocity and the velocity of particles is more than the sheet
velocity. Case 3: A<1, the velocity of sheet is more than the
material particles means fluid particles.

6.2. Temperature field

This subsection discusses the impacts of Weissenberg num-
ber, Brinkman number, thermal relaxation time parameter,
Brownian motion variable, solutal relaxation time variable
and thermophoresis parameter on the temperature field.
Figure 6 depicts behavior of Weissenberg number on the
temperature field. Here temperature is more against higher
values of Weissenberg number. Physically, for increasing the

Figure 6. Temperature field versus We.

Figure 7. Temperature field versus Br.

Figure 8. Temperature field versus βe.

Figure 9. Temperature field versus Nb.

Figure 10. Temperature field versus Nt.

Figure 11. Concentration field versus βc.
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values of Weissenberg number, the stretching rate boosts and
as a result more disturbance occur in the working fluid due to
which the temperature of the fluid particles increases. Figure 7
demonstrates the behavior of Brownian motion variable on
the temperature profile. Less heat conduction is created by
dissipation and therefore temperature profile boosts for rising
Brownian motion parameter. Figure 8 displayed relaxation
parameter due to temperature influence on thermal field. Here,
temperature field and associated layer are decreasing func-
tions of thermal relaxation variable. Physically, for rising
thermal relaxation variable, more time is required to transfer
into the neighboring nanoparticles and consequently temper-
ature of fluid particles diminishes. Figures 9 and 10 are
plotted to judge the impact of Brownian motion variable and
thermophoretic parameter on the temperature field. Here both
temperature and associated thermal layer thickness declines
versus higher values of both Brownian motion parameter and
thermophoretic variable.

6.3. Concentration

Characteristics of solutal relaxation parameter on the nano-
particle concentration has been elaborated in figure 11. Clearly,
the nanoparticle concentration field is decreasing function of
solutal relaxation parameter. In physical point of view, for

higher values of solutal relaxation parameter, the particles of the
working fluid needs more time to diffuse which yields reduction
in nanoparticle concentration profile. Figure 12 displays beha-
vior of Lewis number on nanoparticle concentration field. Here
higher approximation of Lewis number give rise to decay of
nanoparticle concentration. Influence of nanoparticle con-
centration against Brownian motion variable and thermo-
phoretic diffusion are highlighted in figures 13 and 14. As
anticipated, the nanoparticle concentration boosts against higher
values of both pertinent parameters i.e., Brownian motion and
thermophoretic diffusion parameter. It is also remarked that the
solutal concentration boundary layer also upsurges versus these
two parameters.

6.4. Engineering quantities

Significant effects of different interesting parameter on skin
friction coefficient Cfx( ) are deliberated through graphs.

6.4.1. Skin friction coefficient. Here physical characteristics
of magnetic parameter and Weissenberg number on the skin
friction coefficient is demonstrated in figure 15. As expected,
the magnitude of skin friction coefficient boost against higher
Weissenberg number and fixed values of magnetic parameter.
Physically, for rising Weissenberg number, the viscosity of

Figure 12. Concentration field versus Le.

Figure 13. Concentration field versus Nt.

Figure 14. Concentration field versus Nb.

Figure 15. Skin friction coefficient analysis versus We and M.
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the working fluid declines and as a result less friction produce
between the stretched surface and fluid particles and therefore
the magnitude of skin friction coefficient boosts.

7. Conclusions

The current communication highlights Cattaneo-Christov heat
and mass fluxes in magnetohydrodynamic stagnation point
flow of Williamson nano-liquid. Main conclusions are given
below.

• Velocity decreases for larger approximations of We( )
and M .( )

• h¢f( ( )) increases against higher A .( )
• Variation of Weissenberg number We( ) yields improve-
ment of q h .( ( ))

• be( ) and bc( ) have opposite impacts on temperature.
• q h( ( )) is decreased versus Nt( ) and Nb .( )
• Reverse effect of concentration is seen against Nt( )
and Nb .( )

• f h( ( )) decreases when Le( ) enhances.
• f h( ( )) is increased against higher b .c( )
• Skin friction coefficient boosts up for M( ) and We .( )
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