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Abstract
Monolayer tin sulphide (SnS) is an extraordinary two-dimensionalmaterial with semiconductor
nature.We have explored the doping effects of Gallium (Ga) andArsenic (As) atoms on the electronic
andmagnetic properties ofmonolayer SnS usingfirst-principles calculations.We find that the doped
system are energetically stable due to high binding energies. Both the dopants retain the
semiconductor nature ofmonolayer SnSwith a tuneable band gap. Interestingly, spin-polarization
withmagneticmoment of 1.00μB has been induced in bothGa- andAs-dopedmonolayer SnS.
Moreover, the realization ofmagnetic anisotropy energy (MAE) could pave away to utilize Ga- and
As-dopedmonolayer SnS for applications inmagnetic semiconductor devices.

1. Introduction

In 2004when the graphenewas discovered, thematerial science community has been attracted to graphene-like
two-dimensional (2D)material such as silicene, germanene, stanene, phosphorene [1–4]. These 2Dmaterials
play a vital role for future electronic applications [5–9]. Similar to group III-Vmaterials [2, 3, 6], there aremany
materials like group-IV semiconductors (GeS, GeSe. SnS. SnSe) [2, 10–13]which are isoelectronic to that of the
black phosphorene [14, 15]. Furthermore, the puckered 2Dmaterials of groupVA-VA, such as PN, AsN, SbN
andAsP, and examined their performances inmetal-oxide-semiconductor field effect transistors (MOSFET)
theoretically byQu et al [16]. They found the exceptionally high on-current of 103μA μm−1 in the armchair and
zigzag directions for AsN and phosphorene, respectively.

Among the already reported 2Dmaterials (graphene, silicine,MoS2 etc), themono-layer tin sulfide (SnS), an
analogue of phosphorene, has attracted theminds of scientific community due to its fascinating properties
[16–18]. For instance, it has been predicted that SnS has absorption coefficient of 104 cm−1 [19]. Also, an
interference effect was observed in SnS at photon energy 25–30 eV [20]. Furthermore, a high carrier
concentration (1017–1018) [19], low toxicity and earth abundant [21, 22] propertiesmake it attractive. In
comparison to 2DMoS2,monolayer SnS has a larger electronmobility (7.35 104 cm2V1 s1) [17]. Additionally,
ferroelectricity has been realized inmonolayer SnS [23, 24]. The 2D SnS also possess huge piezoelectric effect and
proved itself to be promising in the field of piezoelectronic and nanosized sensor-devices [25]. Recently,
monolayer SnS have been proposed as a selective sensor forNO2 and successfully operated at room temperature,
proving itself to be a new chemiresistors [26]. The nanoflakes of SnS has also been successfully synthesized and
reported to be high sensitivity to temperature than graphene andMoS2 [17]. All of the above studies show the
promising nature of SnS nanosheets in the optoelectronic devices. The nontoxic, and earth-abundant nature of
SnSwith a band gapmake it suitable for a number variety of applications inmemory switching, optoelectronic
devices, and as an anode for rechargeablemetal-ion batteries [27–29].
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Althoughmonolayer SnS in it pristine formhas proven itself withmany attractive features andmanymore
other fascinating properties are yet to be investigated. For instance, less attention has been paid to themagnetic
properties of dopedmonolayer SnSwith non-transition elements, which is a hurdle in developing the next-
generation SnS-based nano-magnetic devices. Pure SnS always exhibit p-type character, and a suitable dopant
canmake it n-type [29, 30]. Several investigations exist in the literature about the doping in SnS to enhance the
photovoltaic and optoelectronic properties. For instance, a thinfilm of Ag-doped SnS has already been prepared
to investigate the changes induced by doping in structure, dielectric, and optical properties and showed a
significant decrease in the resistivity up to 10−3Ω cmwith adding impurities [31]. Similarly, the thin-film of
Cu@SnS has been pre-pared successfully using the spray pyrolysismethod and have observed enhance
optoelectronic properties of doped SnS. Also, thinfilms of Fe@SnS has been fabricated using chemical bath
deposition and found that the current density can be controllable via Fe doping in SnS. Recently, the single
crystal of SnS dopedwith Indium (In) and antimony (Sb) has successfully grown using direct vapour transport
(DVT) and has confirmed the p-type nature of the doped samples [32]. Similarly, Co-/Fe-doped SnS
nanoparticles have been synthesized, using precipitation techniques, and revealed that adding the impurities can
significantly affect the optical properties, whichmakes it suitable for the application in optoelectronic devices
[32, 33]. Since, these reports paid attention to the photovoltaic and optoelectronic applications of SnS. The spin-
polarization could be induced in SnS dopedwith the non-transition elements that could be fascinating for basic
research and technological perspectives. To our knowledge,many experimental investigations exist on theGa-,
andAs-doping in SnSwhere their primary focus on the photovoltaics and optoelectronic properties, and no
report is available on themagnetic properties of Ga-/As-dopedmonolayer SnS.

In this report, we have explored the non-transition element (Ga andAs) doping effects on the physical
properties ofmonolayer SnS in terms of electronic andmagnetic properties using the first-principles
calculations. These atoms belong to group III and groupV,which are the neighbour to Sn atom. Additionally,
they have an electronicmatching configuration, which avoids distortion in the lattice. First, we have investigated
the stability of the doped system in terms of binding energies and found that the configurations are energetically
favourable. Both the dopants keep the semiconducting nature ofmonolayer SnS. Interestingly, the dopants
induced spin-polarization inmonolayer SnSwith a computedMAE 0.87 meV, 0.08 meV forGa- andAs-doped
monolayer SnS, respectively.

2. Computational details

All the first-principles calculations were carried-out with the spin-polarized density functional theory (DFT)
[34]. The generalized gradient approximaztion (GGA)with the Perdew-Burke-Ernzerhoff (PBE) [35, 36]was
employed as an exchange-correlation functional withVienna ab-initio Simulation Package (VASP) [37] as a
calculator. The supercell (3×3×1) approachwas adopted to relax the geometry. According to the supercell,
the doping concentrationwas estimated to be 5.88%. To avoid the interaction between neighbouring cells, a
vacuum spacing ofmore than 20 Åwas employed in the unit cell. For the Brillouin zone sampling of pristine and
doped configurations, theΓ-centered schemewere usedwith 4×4×1 k-points. The hybrid functional, Heyd-
Scuseria-Ernzerhoff (HSE06) [38, 39]was employed to analyze the electronic properties. The spin-polarized
DFT is used for the analysis ofmagnetic properties of the doped configurations. For the analysis of spin
interactions (ferromagnetic (FM) and antiferromagnetic (AFM)) between the impurity atoms, we have extended
the supercell to 6×3×1 and replaced two impurity atom at varying distances in the host Sn atoms. To
estimate theMAE, a non-collinear spin calculation is employed. TheMAE is calculated in terms of themagnetic
easy axis and themagnetic hard axis [40, 41]. The total energymethod is used for theMAE calculations with
12×12×1 k-points and checked the energy convergence ofMAE carefully. Note that the quality of the k-
mesh should be chosen carefully because of the sensitive nature ofMAE to the k-mesh [41].

3. Results and discussion

3.1. Structure of Ga-/As-dopedmonolayer SnS
Wehave discussed the structural parameters in our previous study [18].We found in our study [18] that
monolayer SnS is layeredmaterial with a buckling height of 0.27 Å, as shown infigure 1. Thefigure 1(a) also
shows that the sulphur (S) atom is not exactly on the top of tin (Sn) atom and a slight displacement along the x-
direction can be seen, which is the origin of ferroelectricity inmonolayer SnS [23]. In the last decade, it has been
proven that a single transitionmetal atom (like Co, Pt, and In) can be incorporated into graphene using the
pulsed laser deposition techniques [42]. Beforemoving to calculate other properties, first we have calculated the
binding energies, an important entity that shows the binding strength between the dopant atoms and the host
monolayer SnS. The binding energy (Eb) for our system is defined as, = - -E E E E ,b doped vacant Ga As/ where
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Edoped is the total energy with oneGa-/As-dopant, and Evacant is the energy of one Sn vacancy in themonolayer
SnS. The EGa As/ is the total energy of the respective dopant atom.A larger and positive value of the Eb suggesting
the energetically favorable nature of the doped configurations.

Furthermore, after confirming the favorable nature of the doped configuration by calculating the E ,b we
have noticed a significant penetration of 0.17 Å and 0.06 Å forGa atom andAs atom towards the lower SnS layer.
This penetration of the dopants results a decrease in the bond length, which exhibits that the dopant atoms can
strongly bind to the hostmonolayer SnS, as tabulated in table 1.Note that a similar penetration of the dopants
was estimated inmonolayer SnS dopedwith transitionmetals such asMn, Fe andCo [18].

3.2. Electronic, andmagnetic properties
To see the influences of Ga-/As-doping on the electronic properties ofmonolayer SnS,first, we have investigated
the electronic properties of the pristinemonolayer SnS, as shown infigure 2.Our results show a semiconductor
naturewith a band gap of 1.89 eV. From the figure 2, it is obevious that the location of valence bandmaximum
(VBM) lies betweenΓ andΧ points and the conduction bandminima (CBM) lies betweenϒ andΓ points
exhibiting that themonolayer SnS is an indirect band gapmaterial. Additionally, we take into account the spin-
polarized calculation and found no traces ofmagnetic ground states in the pristinemonolayer SnS.Our
calculated results agreeingwell with the other experimental and theoretical studies [18, 43]. Note that we have
used non-spin polarized band structure for pristine case and spin-polarized one for the doped configurations.

According to the Sn atom electronic configuration (4d105s25p2), the two 5p2 electrons joined by bonding,
and the lone pair is formed by two 5s2 electrons [22]. Thus, adding impurities tomonolayer SnS can be
significantly tuned its electronic properties (decreasing the band gap). Similar trend has also been observed in
Ga-dopedMoS2 [44] andGa-/As-@Germananemonolayer [45]. Note that the dopantsGa/As atoms are

Figure 1.Top/side view of (a) pristine, and (b)Ga-/As-dopedmonolayer SnS. The grey and yellow color balls represented the Sn and
S atoms. TheGa/As atoms are shownwith brown color ball in the host supercell.

Table 1.The binding energies (Eb) of the doped systems, Band gaps (Eg )
for up (↑) and down (↓) spin channels,minimumdistance between the
dopantGa/As and S (d), and themagneticmoments (μ) of singleGa-/As-
dopedmonolayer SnS, and the energey difference (DEi) between the FM
andAFM states. The values shown in bracket are the distance between the
Ga/As dopant and the upper S atoms layer of the hostmonolayer SnS.

Dopants SnS Ga As

Eb (eV) — 5.95 6.90

Eg (eV) ↑ 1.89 1.71 2.05

↓ 1.55 1.19

d (Å) 2.57 (2.74) 2.39 (2.49) 2.25 (2.33)
μ (μB) 0.00 1.00 1.00

DEi (meV) DE1 — −4.34 0.00

DE2 — −1.36 0.13

DE3 — −0.18 0.44
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neighbor to Sn atomwhichmay prevent the lattice distortion in doped configuration. The defects state appears
above/below the valence/conduction band in theGa-/As-dopedmonolayer SnS.

The spin-polarized BS and density of states (DOS) of the doped configurations are shown infigure 3. In
figures 3(a)–(f), one can see that the defects state above/below the valence/conduction band for spin up/down
channels of the doped configurations. The defects states do not cross the Fermi-level, and thus both theGa and
As dopant retain the semiconductor property of SnSwith band gap values of 1.71 eV and 2.05 eV, respectively.
BothGa andAs dopant significantly alters the band gap, see table 1, andfigure 3. From table 1, one can observe
that the bond length is small betweenAs and S, as compared toGa and S in the doped configurations. It suggests
that the As atom is strongly bound to the S atom, and hence a higher energy is needed for breaking the bond,
resulting in a higher band gap of the As-dopedmonolayer SnS. Similarly, Ga dopant has a large bond lengthwith
the neighbor S atoms, whichmight be loosely bound and required lesser energy to breaking the bonding between
them, leading to a decrease the band gap. Thus, a smaller bond length corresponding to a higher band gap. In the
doped system, this decrease or increase in the band gap can also be elaborated by bond strength and can be
estimated by the electronegativity difference of the hostmaterial and the dopant atoms. For example, the
electronegativity of Sn, Ga, andAs are 1.96, 1.81, and 2.18 respectively, on the Pauling’s scale. TheGa dopant has
close electronegativity to Snwith a small difference. The other dopant (As) has a larger difference in the
electronegativity and a strong bindingwould expect from it with the hostmaterials. Thus, the doped
configuration containing anAs atomhas larger band gap than theGa-dopedmonolayer SnS.We have also
calculated theDOS of theGa- andAs-dopedmonolayer SnS to understand the atomic contribution to the
electronic properties and themechanismofmagnetic nature, as shown infigure 3. It can be noted from the
figure 3, that doping ofGa andAs can induce asymmetric DOS for both states i.e. spin-up and spin-down,
exhibiting that the doped SnS is semiconducting withmagnetic character. To further understand the
mechanismof themagnetic behavior of the doped configuration, we have calculated the project DOS (PDOS), as
shown infigure 3.

The Sn-sp, S-p andGa-/As-sp play a vital role to form the valence bandmaximum (VBM) and conduction
bandminimum (CBM), and hence themain contributor to the total DOS as shown infigures 3(c) and (d). The
calculated PDOS of bothGa- andAs-dopedmonolayer SnS show that the Sn-sp, S-p andGa-/As-spmainly
contributed to the total DOS as shown infigures 3(c) and (d).

TheDOS results exhibit thatmagnetic statesmainly originate from the sp-orbitals and a smaller
contribution comes from the S atoms near to the dopant atoms and is confirmed by the spin-density differences
as seen infigure 4.We observed that both the dopants keep the semiconductor nature, though a reduction in the
band gaps is observed relative to the puremonolayer SnS.We expect that our studied configurations could be
promising in spintronics- like spin‐polarized communications andmemory storage [46–48].

More importantly, theDOS of both the dopants show a clear asymmetry near the Fermi energy, suggesting
the possibility of inducing spin polarization inmonolayer SnS. For instance, bothGa andAs induced spin-
polarized ground states with 1.00μBmagneticmoment. Our calculatedmagneticmoment forGa andAs doped
in SnSmonolayer are in the range of Co-dopedMoS2monolayer [49] and nonmetal atoms doped inGaS
monolayers [50]. IsolatedGa (4s24p1) andAs (4s24p3) atoms have one less and one additional valence electrons
than Sn (5s25p2) atom, respectively, which clarifies the spin-polarization inGa‐ andAs‐doped SnS.We
compared the calculated results with other 2Dmaterials dopedwith impurities such as 3d element-MoS2 [51]
and 4d elements-SnS2 [48, 52] and found the same trend. Additionally, in our previous work [18] the doping of

Figure 2.The calculated band structure (BS) of 2Dmonolayer SnS. The grey dashed lines show the Fermi level.
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Mn,Co, and Fewere in high spin state and here in this case the non-magnetic Ga andAs atomdoping induces
spin-polarization in SnS.

The total/localmagnaticmoments of our studied configurations are given in tables 1, 2. To obtain each
atom’smagneticmoments, we integrate the spin-polarized density (spherical integration) usingVASP default
atomic radii. These radii for the atoms Sn, S, Ga, andAs are 1.56 Å, 1.16 Å, 1.40 Å, and 1.22 Å, respectively. The
localmagneticmoments listed in table 2 showsmajormagneticmoment is localized at the dopant atoms and a
smaller contribution can be seen fron the nearby Sn and S atoms. This phenomenon is confirmed by the spin-
density thatmost of the part is localized at both the dopantsGa andAs, as shown infigure 4.

The spin-charge density of the doped system is presented infigure 4 to get a clear insight into spin-
polarization in doped SnS. It is evident that the dopant atom (Ga andAs) induced the spin-polarizedmagnetic
ground. The phenomenon agrees well with the calculated total DOS and PDOS. Also, the dopantsGa/As urges
to an acceptor level.

Figure 3.The calculated spin-polarized band structure ofmonolayer SnSwith (a), (b)Ga, (d), (e)As atoms at the Sn-site. The TDOS
and PDOSofmonolayer SnSwith (c (c1-c4))Ga, (f (f1-f4))As atoms at the Sn-site. In the band structure, the brown and blue lines show
the spin up and spin down channels.
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Furthermore, the FMs andAFMs coupling between the impurity atomswith 5.88%concentration taken into
account for the dopants to study itsmagnatic ground state. For the FM/AFMstates, the orientations are set,
keeping the spin parallel and antiparallel between the dopant atoms. In general, themagnetic interactions between
the twodopants varywith varying the distance between them [18, 48]. For this purpose,we vary thedistance
between the dopants.We consider different configurations by keeping the twodopants at varying positions inboth
the sameanddifferent Sn-plane.Our analysis exhibits that thedopants that replaced the Sn atom in the sameSn-
plane are energetically favorable than thedopants in different Sn-plane. In this study,we consider three different
configurations by keeping the twodopants at distances 4.08 Å, 8.16 Å, and 12.24 Å, respectively to compute the
interaction between them.Themagnetic interaction between the dopants is calculatedusing the energydifference,
D = -E E E ,FM AFM between the FMandAFMstates. TheDE for the distances 4.08 Å, 8.16 Å, and12.24 Å, are
represented byDE ,1 DE ,2 andDE ,3 respectively. From the table 1, it is observed that forGa-doped SnS theFM
state is the ground state, and theAs-doping in SnS favors paramagnetic andAFMstates.Note that the
ferromagnetism above room temperature is already realized inMn-doped SnSe2 [53].We expect that the same
approachesmight beutilized for realizing spin-polarization inGa-/As-dopedmonolayer SnS.

Additionally, we have calculated themagnetic anisotropy of theGa- andAs-dopedmonolayer SnS.
Considering the ground state structure of theGa- andAs-doped systems, we performed a non-collinear
calculationwith the inclusion of spin–orbit coupling by taking themagnetic axes along [100], [010], and [001]
directions. The hard axes are known to be the onewith highest energy and the lowest energy direction is said to
be an easy axis. The difference in energy between hard and easy axes gives themagneto-crystalline anisotropy
energy [41, 54]. For theGa- andAs-dopedmonolayer SnS, the spin-polarization in x-direction, [100], has a
lower energy (easy axes) and the y-direction i.e. [010] has the high energy (hard axis). TheMAEs ( -E E010 100[ ] [ ])
forGa-/As-dopedmonolayer SnS are computed to be 0.87 meV, 0.08 meV, respectively. Our calculatedMAE is
comparable to the dopedmaterials such as phosphorene [54], and 3dmagnetic nanostructures [54, 55]. Thus,
theGa- andAs-dopedmonolayer SnS endows the possible application at a high temperature.

4. Summar

In summary, we usedfirst-principles calculation to explore the electronic andmagnetic properties of Ga-/As-
dopedmonolayer SnS at the Sn-site.We found that both the dopants are energetically favourable in SnS due to
larger binding energies. Significant changes in the electronic properties are observedwith dopingGa andAs
atoms in SnS at the Sn-site. Both the dopants changed the semiconductor SnS to themagnetic one.WhenGa
(As) atom replaces Sn atom, a hole (an unpaired electron) has been induced in the system showing the p-type

Figure 4.The spin-density difference (ρ(up) –ρ(down)) of (a)Ga-, and (b)As dopedmonolayer SnS. The isosurfaces are set at 3×
10−3 e Å−3.

Table 2.The calculatedmagneticmoments (μlocal) of the
dopants Ga/As and the nearby Sn/S atoms to the dopants
inmonolayer SnS.

Dopant Ga As

μlocal (μB) 0.31 0.30

Nearest atoms Sn S Sn S

μlocal (μB) 0.01 0.06 0.02 0.03
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(n-type) doping. Interestingly, spin-polarizationwith amagneticmoment of 1.00μB has been induced in both
theGa- andAs-dopedmonolayer SnS.Moreover, the realization ofMAE could furnish away for the promising
use ofGa- andAs-dopedmonolayer SnS in 2Dphoto-electronic andmagnetic semiconductor devices.
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