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Abstract. The aim of this paper is to establish some common fixed point results for
generalized Ciric and Hardy Roger type contraction in ordered complete metric space.
An example is constructed which shows the novelty of our results. Our results generalize
and extend the results of Altun et. al (J. Funct. Spaces, Article ID 6759320, 2016).
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1. Introduction

Fixed point Theory has a wide range of applications in the different fields of
analysis. The most important tool in fixed point theory is Banach contraction
principle. Many authors obtained fixed point results in various metric spaces
under certain contractive conditions (see [1]-[15]).

Let S : W → W be a mapping. A point u ∈ W is called a fixed point of
S, if u = Su. Fixed point theorems are used to find the solution of different
mathematical models. Ran and Reurings [11] proved a fixed point theorem
in metric space endowed with a partial order and gave applications to matrix
equations. Nieto et. al. [10] extended the result in [11] for nondecreasing
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mappings and applied it to obtain a unique solution for a 1st order ordinary
differential equation with periodic boundary conditions.

In this paper, we obtained some common fixed point theorems for generalized
Ciric and Hardy Roger type contraction endowed with ordered metric space. We
start with some basic notions which will be needed in the sequel.

Definition 1.1 ([11]). Let (W,d) be a metric space. Then:
(i) A sequence {un} in (W,d) is called Cauchy sequence if given ε > 0, there

corresponds a natural number n0 such that for all n,m ≥ n0 we have d(um, un)
< ε.

(ii) A sequence {un} converges to u if limn→∞ d(un, u) = 0.
(iii) (W,d) is called complete if every Cauchy sequence in W converges to a

point u ∈W .

Definition 1.2 ([1]). Let ψ ∈ Ψ and Ψ denotes the set of functions ψ : [0,∞) →
[0,∞) satisfying the conditions:

(Ψ1) ψ is non-decreasing.
(Ψ2) For all t > 0, we have µ0 (t) =

∑∞
k=0 ψk (t) <∞. Where, ψk is the kth

iterate of ψ. The function ψ ∈ Ψ is called comparison function.

Lemma 1.3 ([1]). Let ψ ∈ Ψ. Then:
(i) ψ (t) < t, for all t > 0,
(ii) ψ (0) = 0.

Definition 1.4 ([1]). Let W be a nonempty set. Then ≼ is a partial order on
W if:

(i) u ≼ u for all u ∈W.
(ii) u ≼ v and v ≼ u⇒ u = v for all (u, v) ∈W ×W.
(iii) u ≼ v and v ≼ w ⇒ u ≼ w for all (u, v, w) ∈W ×W ×W.

Definition 1.5 ([3]). Let W be a nonempty set. Then (W,≼, d) is called an
ordered metric space if:

(i) d is a metric on W and (ii) ≼ is a partial order on W .

Definition 1.6 ([1]). Let S : W → W be a function. Then S is level closed
from left, if the set levS≼ = {u ∈W : u ≼ Su} is non-empty and closed.

2. Fixed point results for Ciric type contraction

In this section, we will prove fixed point result for generalized Ciric contraction
in ordered metric space. Our result extend the result given in [1].

Theorem 2.1 Let (W,≼, d) be an ordered complete metric space and S, T :
W →W be the self mappings. Suppose that the following assertions hold:

(i) The operator S :W →W is level closed from left.
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(ii) For every u ∈ W, we have u ≼ Su =⇒ Tu ≽ STu,and u ≽ Su =⇒
Tu ≼ STu.

(iii) There exists a function ρ ∈ Ψ such that for every (u, v) ∈ W ×W, we
have d(Tu, Tv) ≤ ρ(max{d(u, v), d (u, Tu) , d (v, Tv)}), whenever u ≼ Su and
v ≽ Sv. Then S and T have a unique common fixed point.

Proof. Suppose that u0 be the arbitrary element of levS≼, that is, u0 ≼ Su0.
From condition (ii), we have u1 ≽ Su1, where u1 = Tu0. Again from condition
(ii), we have u2 ≼ Su2, where u2 = Tu1. Now, consider the Picard sequence
{un} ⊂W define by un+1 = Tun where n = 0, 1, 2, · · · . Continuing in this way,
we get for even terms of sequence

(2.1) u2n ≼ Su2n.

For odd terms of sequence, we have

(2.2) u2n+1 ≽ Su2n+1.

As inequalities (2.1) and (2.2) holds, so condition (iii) can be applied. Now,
d(u2n+1, u2n+2) = d(Tu2n, Tu2n+1) ≤ ρ(max{d(u2n, u2n+1), d(u2n+1, Tu2n+1),
d(u2n, Tu2n)}) = ρ(max{d(u2n, u2n+1), d(u2n+1, u2n+2)}). If max{d(u2n+1, u2n),
d(u2n+1, u2n+2)} = d(u2n+1, u2n+2), then a contradiction arises. Therefore,

(2.3) d (u2n+1, u2n+2) ≤ ρ(d (u2n, u2n+1)).

As inequalities (2.1) and (2.2) holds, so d(u2n, u2n+1) = d(Tu2n−1, Tu2n)
where n = 0, 1, 2, 3, ... ≤ ρ(max{d(u2n, u2n−1), d(u2n, Tu2n), d(u2n−1, Tu2n−1))
= ρ(max{d(u2n, u2n−1), d(u2n, u2n+1)}). If max{d(u2n, u2n−1), d(u2n, u2n+1)} =
d(u2n, u2n+1), then a contradiction arises. Therefore, d(u2n, u2n+1) ≤ ρ(d(u2n−1,
u2n)). As ρ is non-decreasing, so

(2.4) ρ(d (u2n, u2n+1)) ≤ ρ(ρ(d(u2n−1, u2n))).

Using inequality (2.4) in (2.3), so inequality (2.3) becomes d(u2n+1, u2n+2) ≤
ρ2(d(u2n−1, u2n)). Continuing in this way, we have

(2.5) d (u2n+1, u2n+2) ≤ ρ2n+1(d (u0, u1)).

Similarly, we have

(2.6) d (u2n, u2n+1) ≤ ρ2n(d (u0, u1)).

Combining inequalities (2.5) and (2.6) , we have

(2.7) d (un, un+1) ≤ ρn(d (u0, u1) .

Now, let d (u0, u1) = 0. This implies that u0 = u1. As u1 = Tu0, so

(2.8) u0 = Tu0.
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So, u0 is a fixed point for T . Now, u0 = u1 ≽ Su1 = Su0. This implies that
u0 ≽ Su0, which further implies

(2.9) u0 = Su0.

From inequalities (2.8) and (2.9) , u0 is a common fixed point for S and T .
Now, if d (u0, u1) ̸= 0. Then we assumed that δ = d (u0, u1) > 0. So from
inequality (2.7) , we have d (un, un+1) ≤ ρn (δ) , where n = 0, 1, 2, · · · . For
ϵ > 0 there exist n0 ∈ N such that

∑∞
k ≥n0

ρk (δ) < ϵ. Let n,m ∈ N, such that
n+m > n ≥ n0. Then

d (un, un+m) ≤ d (un, un+1) + d (un+1, un+2) + ....+ d (un+m−1, un+m) .

≤ ρn (δ) + ρn+1 (δ) + ....+ ρn+m−1 (δ) .

=

n+m−1∑
i=n

ρi (δ) ≤
∞∑

k≥n0

ρk (δ) < ϵ.

Therefore, the sequence {un} is a Cauchy sequence in (W,d). So, there exists
some u∗ ∈W such that limn→∞ d (un, u

∗) = 0. But, we know that u2n ∈ levS≼
where n = 0, 1, 2, · · · . As levS≼ is a closed set, and every closed set in a complete
metric space is complete. Therefore u∗ ∈ levS≼. This implies that u∗ ≼ Su∗.
Now, we have

d (u∗, Tu∗) ≤ d (u∗, u2n+2) + d (u2n+2, Tu
∗)

≤ d (u∗, u2n+2) + ρ(max{d (u2n+1, u
∗) , d (u2n+1, Tu2n+1) , d (u

∗, Tu∗)}).

Letting n→ ∞, we have d (u∗, Tu∗) ≤ 0+ρ (d (u∗, Tu∗)) . As ρ (t) < t, therefore
d (u∗, Tu∗) = 0. This implies that u∗ = Tu∗. As, u∗ ≼ Su∗, so, from condition
(ii) we have u∗ = Tu∗ ≽ STu∗ = Su∗. This implies that u∗ = Su∗. Hence, u∗ is
a common fixed point for S and T.

Uniqueness. Suppose u be the another fixed point for S and T . Then Su =
Tu = u. As, u ≼ u, then u ≽ u = Su⇒ u ≽ Su. Also u∗ ≼ Su∗. Now,

d (u∗, u) = d (Tu∗, Tu) ≤ ρ (max{d (u∗, u) , d (u∗, Tu∗) , d (u, Tu)})
d (u∗, u) ≤ ρd (u∗, u)

As, ρ (t) < t for all t > 0, so, d (u∗, u) = 0. Thus, u∗ is unique common fixed
point for S and T.

Example 2.2. Let W = [0,∞] and d be the metric on W defined by d (u, v) =
|u− v| , (u, v) ∈ W ×W. Then (W,d) is a complete metric space. Let ℜ be a
binary relation on W defined by ℜ = {(u, u) : u ∈ W} ∪ {(0, 2)}. Consider the
partial order on W defined by (u, v) ∈W ×W,u ≼ v ⇔ (u, v) ∈ ℜ. Let us define
the pair of mappings T, S :W →W by

Tu =

{
u, if u /∈ {0, 2}
2, otherwise

, Su =

{
2, if u ∈ [0, 2]

1, if u > 2.
.
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Observe that, levS≼ = {0, 2}, which is non-empty and closed. Therefore, the
operator S : W → W is level closed from the left. Moreover, we have {u ∈
W : Su ≼ u} = {2}. In order to check the condition (ii) of Theorem 2.1 , let
u ∈ W be such that u ≼ Su; that is, u ∈ {0, 2}. If u = 0, then Tu = T0 = 2
and STu = ST0 = S2 = 2. Then STu ≼ Tu. If u = 2 then Tu = T2 and
STu = ST2 = S2 = 2. Then STu ≼ Tu. Now, let u ∈ W be such that
Su ≼ u; that is u = 2. In this case, we have STu = ST2 = S2 = 2 and
Tu = T2 = 2. Then Tu ≼ STu. Therefore, condition (ii) of Theorem 2.1 is
satisfied. Now, let (u, v) ∈ W ×W be such that u ≼ Su and Sv ≼ v; that is,
u ∈ {0, 2} and v = 2. For (u, v) = (0, 2) , we have d (Tu, Tv) = d (T0, T2) =
d (2, 2) = 0 ≤ ρ (2) = ρ(max{d(u, v), d (u, Tu) , d (v, Tv)}). Now, for (u, v) =
(2, 2), d (Tu, Tv) ≤ d (T2, T2) ≤ d(2, 2) ≤ 0 ≤ ρ(0) ≤ ρd (2, 2) , for every ρ ∈ Ψ.
Therefore, all conditions of Theorem 2.2 are satisfied and 2 is the common fixed
point.

Now, we will prove fixed point results for generalized Hardy Roger contrac-
tion. Our result extend the result given in [1].

Theorem 2.3. Let (W,≼, d) be an ordered complete metric space and S, T :
W →W be the self mappings. Suppose that the following assertions hold:

(i)′ The operator S :W →W is level closed from left.
(ii)′ For every u ∈ W, we have u ≼ Su =⇒ Tu ≽ STu, and u ≽ Su =⇒

Tu ≼ STu.
(iii)′ There exist constants a, b, c such that 0 ≤ a+ 2b+ 2c < 1

d (Tu, Tv) ≤ a(d (u, v)) + b[d (u, Tu) + d (v, Tv)] + c[d (u, Tv) + d (v, Tu)],

whenever u ≼ Su and v ≽ Sv. Then S and T have a unique common fixed point.

Proof. Suppose that u0 be the arbitrary element of levS≼, that is, u0 ≼ Su0.
From condition (ii), we have u1 ≽ Su1, where u1 = Tu0. Again from condition
(ii), we have u2 ≼ Su2, where u2 = Tu1. Now, consider the Picard sequence
{un} ⊂ W define by un+1 = Tun where n = 0, 1, 2, · · · . Continuing in this way
we get, for even terms of sequence

(2.10) u2n ≼ Su2n.

For odd terms of sequence, we have

(2.11) u2n+1 ≽ Su2n+1.

As a consequence, we have

d (u2n, u2n+1) = d (Tu2n−1, Tu2n)

≤ a(d (u2n−1, u2n)) + b[d (u2n−1, Tu2n−1) + d (u2n, Tu2n)]

+ c[d (u2n−1, Tu2n) + d (u2n, Tu2n−1)]

≤ (a+ b+ c)d (u2n−1, u2n) + (b+ c) d (u2n, u2n+1)

(1− b− c) d (u2n, u2n+1) ≤ (a+ b+ c)d (u2n−1, u2n) .
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Dividing by (1− b− c) on both sides, we get

(2.12) d (u2n, u2n+1) ≤
(a+ b+ c)

(1− b− c)
d (u2n−1, u2n) .

Let

(2.13) ξ =
(a+ b+ c)

(1− b− c)
.

Using inequality (2.13) in (2.12), then inequality (2.12) becomes

(2.14) d (u2n, u2n+1) ≤ ξ(d (u2n−1, u2n)).

As, 0 < a+ 2b+ 2c < 1 and ξ ∈ [0, 1). So,

(2.15) d (u2n−1, u2n) ≤ ξ (d (u2n−2, u2n−1)) .

Using inequality (2.15) in (2.14), then inequality (2.14) becomes

d (u2n, u2n+1) ≤ ξ2(d (u2n−2, u2n−1)).

Continuing in this way, we get

(2.16) d (u2n, u2n+1) ≤ ξ2n(d (u0, u1)).

Similarly

(2.17) d (u2n+1, u2n+2) ≤ ξ2n+1(d (u0, u1)).

Combining inequalities (2.16) and (2.17) , we have

(2.18) d (un, un+1) ≤ ξn(d (u0, u1)).

Now, let d (u0, u1) = 0. This implies that u0 = u1. As u1 = Tu0, so

(2.19) u0 = Tu0.

So u0 is a fixed point for T . Now, u0 = u1 ≽ Su1 = Su0, therefore

(2.20) u0 = Su0.

From inequalities (2.19) and (2.20) , u0 is a common fixed point for S and
T . Now, if d (u0, u1) ̸= 0. Then we suppose that η = d (u0, u1) > 0. So
d (un, un+1) ≤ ξn (η) , n = 0, 1, 2, 3, ... For ϵ > 0 there exist n0 ∈ N such that∑∞

k ≥n0
ξk (η) < ϵ. Let n,m ∈ N, such that n+m > n ≥ n0. Then

d (un, un+m) = d (un, un+1) + d (un+1, un+2) + ...+ d (un+m−1, un+m) .

≤ ξn (η) + ξn+1 (η) + ...+ ξn+m−1 (η) .

=

n+m−1∑
i=n

ξi (η) ≤
∞∑
k≥n

ξk (η) < ϵ.
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Therefore, the sequence {un} is a Cauchy sequence in (W, d) . So, there exist
some u∗ ∈ W such that limn→∞ d (un, u

∗) = 0. By following similar steps as in
previous theorem, we have u∗ ≼ Su∗. Now,

d (u∗, Tu∗) ≤ d (u∗, u2n+2) + d (u2n+2, Tu
∗)

≤ d (u∗, u2n+2)+a(d (u2n+1, u
∗))+b[d (u2n+1, Tu2n+1)+d (u

∗, Tu∗)]

+ c[d (u2n+1, Tu
∗) + d (u∗, Tu2n+1)]

≤ d (u∗, u2n+2)+a(d (u2n+1, u
∗))+b(d (u2n+1, u2n+2))+b(d (u

∗, Tu∗))

+ c(d (u2n+1, Tu
∗)) + c(d (u∗, u2n+2)).

If we take limn→∞, then we obtain (1− b− c) d (u∗, Tu∗) ≤ 0. This implies that
u∗ = Tu∗. Now, by following similar steps as in previous theorem, we have
u∗ = Su∗. Hence, u∗ is a common fixed point for S and T.

Uniqueness. Suppose r be the another common fixed point for S and T . Then
Sr = Tr = r. As, r ≼ r, then r ≽ r = Sr ⇒ r ≽ Sr. Also u∗ ≼ Su∗. Now,

d (u∗, r) = d (Tu∗, T r)

≤ a(d (u∗, r)) + b[d (u∗, Tu∗) + d(r, T r)]

+c[d (u∗, T r) + d (r, Tu∗)]

≤ a(d (u∗, r)) + b[d (u∗, u∗) + d(r, r)]

+c[d (u∗, r) + d (r, u∗)]

(1− a− 2c) d (u∗, r) ≤ 0.

But, (1− a− 2c) > 0. So, d (u∗, r) = 0 or u∗ = r. Hence, u∗ is unique common
fixed point for S and T
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