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Abstract
The objective of this article is to introduce function weighted L-R-complete
dislocated quasi-metric spaces and to present fixed point results fulfilling generalized
rational type F-contraction for a multivalued mapping in these spaces. A suitable
example confirms our results. We also present an application for a generalized class of
nonlinear integral equations. Our results generalize and extend the results of
Karapınar et al. (IEEE Access 7:89026–89032, 2019).
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1 Introduction and preliminaries
In functional analysis, fixed point theory plays a vital role in elaborating the problems.
Fixed point results for the multivalued functions were first examined by Nadler [24]. The
work of Nadler has been cited by many mathematicians and brings to the level of ultimate
advancement, see [6, 25, 33]. Dislocated metric space [21] is one of the generalizations
of metric spaces among several generalizations, and it has applications in logic program-
ming semantics [10]. Hussain et al. [11] extended this concept to dislocated b-metric space
and obtained results for weak contractions. On the other hand, Wilson [39] introduced
the quasi-metric space by excluding the symmetric conditions in the definition of metric
spaces. Several extensions of quasi-metric space have been made, and some fixed point
theorems have been obtained, see [1, 9, 16, 18–20, 28, 31]. Shoaib et al. [35] established
results for multivalued functions in a dislocated quasi-metric space, see also [8, 37]. Ra-
tional type, Kannan type, and Reich type contractions on multivalued functions in double
controlled quasi-metric type spaces [34, 36] have been introduced, and some fixed point
theorems have been obtained. Another generalization of metric space, named function
weighted metric space or F-metric space (see, [2–4, 22]), was defined by Jleli [13]. Recently,
Panda et al. [29] defined extended F-metric space and discussed a solution for Atangana–
Baleanu fractional and Lp-Fredholm integral equations. Karapınar et al. [17] gave the idea
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of a function weighted quasi-metric space and examined the presence of a fixed point
of functions in function weighted bi-complete quasi-metric spaces. Different efforts have
been made in the field of F-contraction mapping [38] to exhibit certain results on fixed
points of multivalued mappings. Hussain et al. [12] introduced Suzuki–Wardowski type,
Rasham et al. [30] established rational Ćirić type, and Sgroi et al. [32] defined Hardy–
Roger type F-contraction mappings. Some applications were also discussed by them. For
more results, see [5, 7, 14, 15, 23, 26, 27]. In this article, we introduce function weighted
L-R-complete dislocated quasi-metric spaces and obtain fixed point results for multival-
ued mappings satisfying generalized rational type F-contraction in such spaces without
the second condition (F2) and the third condition (F3) imposed on Wardowski’s function
[38]. A suitable example and an application confirm our results. We start with some basic
concepts.

Definition 1.1 ([17]) A function h : (0, +∞) →R is said to be
(i) logarithmic-like, if:

for each sequence {τm} ⊂ (0, +∞) satisfies

lim
m→+∞h(τm) = –∞ if and only if lim

m→+∞τm = 0.

(ii) nondecreasing function, if:

0 < σ < τ implies h(σ ) < h(τ ).

Let γ denote the set of all logarithmic-like nondecreasing functions.

Definition 1.2 ([13]) For a mapping δ: M × M → [0, +∞), if a pair (h, C) ∈ γ × [0, +∞)
exists for all u, v, w ∈ M, we have

(�1) δ(u, w) = δ(w, u);
(�2) δ(u, w) = 0 if and only if u = w;
(�3) For any j ∈N, j ≥ 2, we have

δ(u, w) > 0 implies h
(
δ(u, w)

) ≤ h(
j–1∑

i=1

δ(vi, vi+1) + C

for every (vi)
j
i=1 ⊂ M with (v1, vj) = (u, w). Then δ is called an F -metric or a function

weighted metric [17] and (M, δ) is known as an F -metric space or a function weighted
metric space. If we exclude the condition (�1) from Definition 1.2, then (M, δq) represents
a function weighted quasi-metric space [17].

Definition 1.3 Let (M, δq) be a function weighted quasi-metric space. If we replace (�2)
with δq(u, w) = 0 implies u = w, that is, δq(u, u) may not be equal to zero, then we say that
δq is a function weighted dislocated quasi-metric on M. We will denote this new metric by
δdq. Furthermore, the couple (M, δdq) is called a function weighted dislocated quasi-metric
space. Note that any function weighted quasi-metric space is also a function weighted
dislocated quasi-metric space but the converse is not true in general.
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Definition 1.4 Let (M, δdq) be a function weighted dislocated quasi-metric space. A se-
quence {ut} in M is

(i) left convergent to some u ∈ M if and only if lim
m→+∞δdq(um, u) = 0 or, for every ε > 0,

we have δdq(um, u) < ε for all m ≥ tε , where tε is some integer depending on ε.
(ii) right convergent to some u ∈ M if and only if lim

t→+∞δdq(u, ut) = 0 or, for every ε > 0,
we have δdq(u, ut) < ε for all t ≥ tε , where tε is some integer depending on ε.

(iii) The sequence {ut} is L-R-convergent if and only if it is both left and right
convergent.

(iv) The sequence {ut} is bi-convergent to some u ∈ M if and only if
lim

t−→+∞δdq(u, ut) = lim
t−→+∞δdq(ut , u) = 0.

Lemma 1.5 Every L-R-convergent sequence in a function weighted dislocated quasi-metric
space is bi-convergent.

Definition 1.6 Let (M, δdq) be a function weighted dislocated quasi-metric space. A se-
quence {ut} in M is

(i) left Cauchy if and only if limt,m→+∞
t>m

δdq(um, ut) = 0 or, for every ε > 0, we have

δdq(um, ut) < ε for all t > m ≥ tε , where tε is some integer depending on ε.
(ii) right Cauchy if and only if limt,m→+∞

m>t
δdq(um, ut) = 0 or, for every ε > 0, we have

δdq(um, ut) < ε for all m > t ≥ tε , where tε is some integer depending on ε.
(iii) The sequence {ut} is bi-Cauchy if and only if it is both left and right Cauchy.

Definition 1.7 Let (M, δdq) be a function weighted dislocated quasi-metric space. Then
(M, δdq) is

(i) right-complete if and only if each right-Cauchy sequence in M is bi-convergent to
some u ∈ M.

(ii) left-complete if and only if each left-Cauchy sequence in M is bi-convergent to
some u ∈ M.

(iii) bi-complete (or dual complete) if and only if it is both right- and left-complete.
(iv) L-R-complete if and only if for every bi-Cauchy in M is L-R-convergent to some

u ∈ M.

Remark 1.8 Every right-complete, left-complete, and bi-complete function weighted dis-
located quasi-metric space is L-R-complete, but the converse is not true in general, so it is
better to prove results in L-R-complete function weighted dislocated quasi-metric space
instead of right-complete or left-complete or bi-complete.

Definition 1.9 Let Q be a nonempty subset in a function weighted dislocated quasi-
metric space (M, δdq), and let u ∈ M. An element w0 ∈ Q is called the best approximation
in Q for u if

δdq(u, Q) = δdq(u, w0), where δdq(u, Q) = inf
w∈Q

δdq(u, w),

δdq(Q, u) = δdq(w0, u), where δdq(Q, u) = inf
w∈Q

δdq(w, u).

If each a ∈ M has at least one best approximation in Q, then Q is called a proximinal set.
The set of all closed proximinal subsets of M is denoted by P(M).
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Definition 1.10 The function Hδdq : P(M) × P(M) → [0, +∞), defined by

Hδdq (G, H) = max
{

sup
g∈G

δdq(g, H), sup
h∈H

δdq(G, h)
}

,

is called Hausdorff–Pompeiu function weighted dislocated quasi-metric on P(M).

Lemma 1.11 Suppose that (M, δdq) is a function weighted dislocated quasi-metric. Let
(P(M), Hδdq ) be a function weighted Hausdorff–Pompeiu quasi-metric space on P(M).
Then, for all G, F ∈ P(M) and for each g ∈ G, there exists fg ∈ F that satisfies δdq(g, F) =
δdq(g, fg), and then

Hδdq (G, F) ≥ δdq(g, fg).

2 Main results
Let (M, δdq) be an L-R-complete function weighted dislocated quasi-metric, a0 ∈ M and
S : M → P(M) be the multivalued mapping on M. Let a1 ∈ Sa0 such that δdq(a0, Sa0) =
δdq(a0, a1) and δdq(Sa0, a0) = δdq(a1, a0). Now, for a1 ∈ M, there exists a2 ∈ Sa1 such
that δdq(a1, Sa1) = δdq(a1, a2) and δdq(Sa1, a1) = δdq(a2, a1). Continuing this process, we
construct a sequence an of points in M such that an+1 ∈ San, and an+2 ∈ San+1 with
δdq(an, San) = δdq(an, an+1), δdq(San, an) = δdq(an+1, an) and δdq(an+1, San+1) = δdq(an+1, an+2),
δdq(San+1, an+1) = δdq(an+2, an+1). We denote this iterative sequence by {MS(an)} and say
that {MS(an)} is a sequence in M generated by a0. Now, we announce our first new result
in this paper.

Theorem 2.1 Suppose that (M, δdq) is an L-R-complete function weighted dislocated
quasi-metric with respect to (h, C) ∈ γ × [0, +∞). Let S : M → P(M) be a multivalued
mapping, F : (0, +∞) → R be a strictly increasing mapping, τ > 0, μ1,μ2,μ3,μ4 ≥ 0,
η1 = μ1+μ2

1–μ3–μ4
< 1 and η2 = μ1+μ3

1–μ2–μ4
< 1 such that

τ + max
{
F

(
Hδdq (Sg, Sw)

)
,F

(
Hδdq (Sw, Sg)

)}

≤ min

{
F

(
μ1δdq(g, w) + μ2δdq(g, Sg) + μ3δdq(w, Sw) + μ4

δdq(g, Sg).δdq(w, Sw)
1 + δdq(g, w)

)
,

F
(

μ1δdq(w, g) + μ2δdq(Sg, g) + μ3δdq(Sw, w) + μ4
δdq(Sg, g).δdq(Sw, w)

1 + δdq(w, g)

)}
, (2.1)

whenever min{Hδdq (Sg, Sw), Hδdq (Sw, Sg)} > 0, g, w ∈ {MS(gt)} ∪ {z∗}, where {MS(gt)} → z∗.
Then z∗ is the fixed point of S.

Proof Consider the sequence {MS(gt)}. By using Lemma 1.11 and inequality (2.1), we have

τ + F
(
δdq(gt+1, gt+2)

) ≤ τ + F
(
Hδdq (Sgt , Sgt+1)

)

≤ F
(

μ1δdq(gt , gt+1) + μ2δdq(gt , Sgt) + μ3δdq(gt+1, Sgt+1)

+ μ4
δdq(gt , Sgt).δdq(gt+1, Sgt+1)

1 + δdq(gt , gt+1)

)
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≤ F
(

μ1δdq(gt , gt+1) + μ2δdq(gt , gt+1) + μ3δdq(gt+1, gt+2)

+ μ4
δdq(gt , gt+1).δdq(gt+1, gt+2)

1 + δdq(gt , gt+1)

)

≤ F
(
(μ1 + μ2)δdq(gt , gt+1) + (μ3 + μ4)δdq(gt+1, gt+2)

)
.

As τ > 0, we have

F
(
δdq(gt+1, gt+2)

)
< F

(
(μ1 + μ2)δdq(gt , gt+1) + (μ3 + μ4)δdq(gt+1, gt+2)

)
.

As F is a strictly increasing mapping, we have

δdq(gt+1, gt+2) < (μ1 + μ2)δdq(gt , gt+1) + (μ3 + μ4)δdq(gt+1, gt+2).

We get

(1 – μ3 – μ4)δdq(gt+1, gt+2) < (μ1 + μ2)δdq(gt , gt+1),

δdq(gt+1, gt+2) <
(

μ1 + μ2

1 – μ3 – μ4

)
δdq(gt , gt+1).

As η1 = μ1+μ2
1–μ3–μ4

< 1, so

δdq(gt+1, gt+2) < η1δdq(gt , gt+1).

Let η = max{η1,η2} < 1, hence

δdq(gt+1, gt+2) < ηδdq(gt , gt+1). (2.2)

Now, by using Lemma 1.11 and inequality (2.1), we have

τ + F
(
δdq(gt , gt+1)

) ≤ τ + F
(
Hδdq (Sgt–1, Sgt)

)

≤ F
(

μ1δdq(gt–1, gt) + μ2δdq(gt , Sgt) + μ3δdq(gt–1, Sgt–1)

+ μ4
δdq(gt , Sgt).δdq(gt–1, Sgt–1)

1 + δdq(gt–1, gt)

)

≤ F
(

μ1δdq(gt–1, gt) + μ2δdq(gt , gt+1) + μ3δdq(gt–1, gt)

+ μ4
δdq(gt–1, gt).δdq(gt , gt+1)

1 + δdq(gt–1, gt)

)

≤ F
(
(μ1 + μ3)δdq(gt–1, gt) + (μ2 + μ4)δdq(gt , gt+1)

)
.

This implies

F
(
δdq(gt , gt+1)

)
< F

(
(μ1 + μ3)δdq(gt–1, gt) + (μ2 + μ4)δdq(gt , gt+1)

)
.
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Since F is a strictly increasing mapping, we have

δdq(gt , gt+1) < (μ1 + μ3)δdq(gt–1, gt) + (μ2 + μ4)δdq(gt , gt+1).

We get

(1 – μ2 – μ4)δdq(gt , gt+1) < (μ1 + μ3)δdq(gt–1, gt),

δdq(gt , gt+1) <
(

μ1 + μ3

1 – μ2 – μ4

)
δdq(gt–1, gt).

As η2 = μ1+μ3
1–μ2–μ4

< 1, so

δdq(gt , gt+1) < η2δdq(gt–1, gt) < ηδdq(gt–1, gt). (2.3)

By using (2.3) in (2.2), we have

δdq(gt+1, gt+2) < η2δdq(gt–1, gt).

Continuing in this way, we have

δdq(gt+1, gt+2) < ηt+1δdq(g0, g1). (2.4)

By using Lemma 1.11 and inequality (2.1), we have

τ + F
(
δdq(gt+2, gt+1)

) ≤ τ + F
(
Hδdq (Sgt+1, Sgt)

)

≤ F
(

μ1δdq(gt+1, gt) + μ2δdq(Sgt , gt) + μ3δdq(Sgt+1, gt+1)

+ μ4
δdq(Sgt , gt).δdq(Sgt+1, gt+1)

1 + δdq(gt+1, gt)

)

≤ F
(

μ1δdq(gt+1, gt) + μ2δdq(gt+1, gt) + μ3δdq(gt+2, gt+1)

+ μ4
δdq(gt+1, gt).δdq(gt+2, gt+1)

1 + δdq(gt+1, gt)

)

≤ F
(
(μ1 + μ2)δdq(gt+1, gt) + (μ3 + μ4)δdq(gt+2, gt+1)

)
.

Again by doing similar steps to obtain (2.2) from (2.1), we have

δdq(gt+2, gt+1) < η1δdq(gt+1, gt) < ηδdq(gt+1, gt). (2.5)

By using Lemma 1.11 and inequality (2.1), we have

τ + F
(
δdq(gt+1, gt)

) ≤ τ + F
(
Hδdq (Sgt , Sgt–1)

)

≤ F
(

μ1δdq(gt , gt–1) + μ2δdq(Sgt , gt) + μ3δdq(Sgt–1, gt–1)
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+ μ4
δdq(Sgt , gt).δdq(Sgt–1, gt–1)

1 + δdq(gt , gt–1)

)

≤ F
(

μ1δdq(gt , gt–1) + μ2δdq(gt+1, gt) + μ3δdq(gt , gt–1)

+ μ4
δdq(gt+1, gt).δdq(gt , gt–1)

1 + δdq(gt , gt–1)

)

≤ F
(
(μ1 + μ3)δdq(gt , gt–1) + (μ2 + μ4)δdq(gt+1, gt)

)
.

Again by doing similar steps to obtain (2.3) from (2.1), we have

δdq(gt+1, gt) < η2δdq(gt , gt–1) < ηδdq(gt , gt–1). (2.6)

By using (2.6) in (2.5), we have

δdq(gt+2, gt+1) < η2δdq(gt , gt–1).

Continuing in this way, we have

δdq(gt+2, gt+1) < ηt+1δdq(g1, g0). (2.7)

As (h, C) ∈ γ × [0, +∞) satisfies (�3), then for fixed ε > 0 there exists δ > 0 such that

0 < σ < δ implies h(σ ) < h(ε) – C. (2.8)

By using (2.4), we have

m–1∑

k=n

δdq(gk,gk+1) < ηn(1 + η + η2 . . .ηm–n–1)δdq(g0, g1),

m–1∑

k=n

δdq(gk,gk+1) <
ηn

1 – η
δdq(g0, g1), m > n. (2.9)

Since lim
n→+∞

ηn

1–η
δdq(g0, g1) = 0, then for δ > 0 there exists some n0 ∈ N such that 0 <

ηn

1–η
δdq(g0, g1) < δ, n ≥ n0. By (2.8) and (2.9), we write

h

(m–1∑

k=n

δdq(gk,gk+1)

)

< h
(

ηn

1 – η
δdq(g0, g1)

)

< h(ε) – C for all m, n ≥ n0.

Suppose that δdq(gp, gdq) = 0 for some p, q ∈ {0, 1, 2, 3, . . .} with q > p, then gp = gdq

δdq(gp, gp+1) = δdq(gp, Sgp) = δdq(gdq, Sgdq) = δdq(gdq, gq+1) ≤ ηq–pδdq(gp, gp+1),
(
1 – ηq–p)δdq(gp, gp+1) ≤ 0.
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So δdq(gp, gp+1) = 0 and gp = gp+1. Now, gp+1 ∈ Sgp implies that gp ∈ Sgp. Hence gp is the fixed
point of S. Now suppose that δdq(gm, gn) 
= 0 for all m, n ∈ {0, 1, 2, 3, . . .} with m > n. Using
(�3) and the inequality, δdq(gn,gm) > 0 for all m, n ≥ n0, we have

h
(
δdq(gn,gm)

)
< h

(m–1∑

k=n

δdq(gk,gk+1)

)

+ C < h(ε),

δdq(gn,gm) < ε for all m, n ≥ n0.

This proves that {gn} is a right-Cauchy sequence in M. Again by using (2.7), we have

m–1∑

k=n

δdq(gk+1,gk) ≤ ηn(1 + η + η2 . . .ηm–n–1)δdq(g1, g0)

≤ ηn

1 – η
δdq(g1, g0), m > n.

Since lim
n→+∞

ηn

1–η
δdq(g1, g0) = 0, for any δ > 0 there exists some n1 ∈ N such that 0 <

ηn

1–η
δdq(g1, g0) < δ for all n ≥ n1. Furthermore, assume that (h, C) ∈ γ × [0, +∞) satisfies

(�3), and let ε > 0 be fixed, by using similar steps as above, we have

δdq(gm,gn) < ε for all m, n ≥ n1.

This proves that {gn} is a left-Cauchy sequence in M. Hence, {gn} is a bi-Cauchy sequence
in M. Since (M, δdq) is L-R-complete, there will be some y∗ ∈ M such that {gn} is L-R-
convergent to y∗. By Lemma 1.5, every L-R-convergent sequence is bi-convergent, that
is,

lim
t−→+∞δdq

(
z∗, gt

)
= lim

t−→+∞δdq
(
gt , z∗) = 0.

Suppose δdq(z∗, Sz∗) > 0, we have

τ + F
(
δdq

(
gt+1, Sz∗)) ≤ τ + F

(
Hδdq

(
Sgt , Sz∗))

≤ F
(

μ1δdq
(
gt , z∗) + μ2δdq(gt , Sgt) + μ3δdq

(
z∗, Sz∗)

+ μ4
δdq(gt , Sgt).δdq(z∗, Sz∗)

1 + δdq(gt , z∗)

)
.

This implies that

δdq
(
gt+1, Sz∗) < μ1δdq

(
gt , z∗) + μ2δdq(gt , Sgt) + μ3δdq

(
z∗, Sz∗)

+ μ4
δdq(gt , Sgt).δdq(z∗, Sz∗)

1 + δdq(gt , z∗)
.

Taking t → +∞, we have

δdq
(
z∗, Sz∗) < μ3δdq

(
z∗, Sz∗),
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(1 – μ3)δdq
(
z∗, Sz∗) < 0.

This is a contradiction, so δdq(z∗, Sz∗) = 0, so z∗ ∈ Sz∗. Hence z∗ is a fixed point of S. �

Example 2.2 Let M = [0, +∞). Consider δdq : M × M −→ [0, +∞) to be an L-R-complete
function weighted dislocated quasi-metric on M defined as

δdq(g, w) = (2g + 3w)2.

Obviously, δdq satisfies axiom (�1). However, δdq is not symmetric, as δdq(1, 2) = 64 
= 49 =
δdq(2, 1). Define S : M×M −→ P(M) as S(g) = [ 3g

10 , 2g
3 ]. Take μ1 = 1

2 , μ2 = 1
4 , μ3 = 1

8 , μ4 = 1
10 ,

then μ1 + μ2 + μ3 + μ4 < 1. Taking τ = 0.2 and F (g) = ln g , we have

τ + max
{
F

(
Hδdq (Sg, Sw)

)
,F

(
Hδdq (Sw, Sg)

)}

≤ min

{
F

(
μ1δdq(g, w) + μ2δdq(g, Sg) + μ3δdq(w, Sw) + μ4

δdq(g, Sg).δdq(w, Sw)
1 + δdq(g, w)

)
,

F
(

μ1δdq(w, g) + μ2δdq(Sg, g) + μ3δdq(Sw, w) + μ4
δdq(Sg, g).δdq(Sw, w)

1 + δdq(w, g)

)}

= F
(

μ1δdq(w, g) + μ2δdq(Sg, g) + μ3δdq(Sw, w) + μ4
δdq(Sg, g).δdq(Sw, w)

1 + δdq(w, g)

)

= ln

(
1
2

(2g + 3w)2 +
1
4

(
3g
5

+ 3g
)2

+
1
8

(
3w
5

+ 3w
)2

+
1

10
( 3g

5 + 3g)2.( 3w
5 + 3w)2

1 + (2g + 3w)2

)
.

Since all the conditions of Theorem 2.1 are fulfilled and 0 is a fixed point of S.

Corollary 2.3 Suppose that (M, δdq) is an L-R-complete function weighted dislocated
quasi-metric space with respect to (h, C) ∈ γ × [0, +∞). Let S : M → P(M) be a multi-
valued mapping, F : (0, +∞) → R be a strictly increasing mapping, τ > 0, μ1,μ3,μ4 ≥ 0,
η1 = μ1

1–μ3–μ4
< 1 and η2 = μ1+μ3

1–μ4
< 1 such that

τ + max
{
F

(
Hδdq (Sg, Sw)

)
,F

(
Hδdq (Sw, Sg)

)}

≤ min

{
F

(
μ1δdq(g, w) + μ3δdq(w, Sw) + μ4

δdq(g, Sg).δdq(w, Sw)
1 + δdq(g, w)

)
,

F
(

μ1δdq(w, g) + μ3δdq(Sw, w) + μ4
δdq(Sg, g).δdq(Sw, w)

1 + δdq(w, g)

)}

whenever min{Hδdq (Sg, Sw), Hδdq (Sw, Sg)} > 0, g, w ∈ {MS(gt)} ∪ {z∗}, where {MS(gt)} → z∗.
Then z∗ is the fixed point of S.

Corollary 2.4 Suppose that (M, δdq) is an L-R-complete function weighted dislocated
quasi-metric space with respect to (h, C) ∈ γ × [0, +∞). Let S : M → P(M) be a multi-
valued mapping, F : (0, +∞) → R be a strictly increasing mapping, τ > 0, μ1,μ2,μ4 ≥ 0,
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η1 = μ1+μ2
1–μ4

< 1 and η2 = μ1
1–μ2–μ4

< 1 such that

τ + max
{
F

(
Hδdq (Sg, Sw)

)
,F

(
Hδdq (Sw, Sg)

)}

≤ min

{
F

(
μ1δdq(g, w) + μ2δdq(g, Sg) + μ4

δdq(g, Sg).δdq(w, Sw)
1 + δdq(g, w)

)
,

F
(

μ1δdq(w, g) + μ2δdq(Sg, g) + μ4
δdq(Sg, g).δdq(Sw, w)

1 + δdq(w, g)

)}

whenever min{Hδdq (Sg, Sw), Hδdq (Sw, Sg)} > 0, g, w ∈ {MS(gt)} ∪ {z∗}, where {MS(gt)} → z∗.
Then z∗ is the fixed point of S.

Corollary 2.5 Suppose that (M, δdq) is an L-R-complete function weighted dislocated
quasi-metric space with respect to (h, C) ∈ γ × [0, +∞). Let S : M → P(M) be a multi-
valued mapping, F : (0, +∞) → R be a strictly increasing mapping, τ > 0, μ1,μ2,μ3 ≥ 0,
η1 = μ1+μ2

1–μ3
< 1 and η2 = μ1+μ3

1–μ2
< 1 such that

τ + max
{
F

(
Hδdq (Sg, Sw)

)
,F

(
Hδdq (Sw, Sg)

)}

≤ min
{
F

(
μ1δdq(g, w) + μ2δdq(g, Sg) + μ3δdq(w, Sw)

)
,

F
(
μ1δdq(w, g) + μ2δdq(Sg, g) + μ3δdq(Sw, w)

)}

whenever min{Hδdq (Sg, Sw), Hδdq (Sw, Sg)} > 0, g, w ∈ {MS(gt)} ∪ {z∗}, where {MS(gt)} → z∗.
Then z∗ is the fixed point of S.

3 Application
In this section, we present our main result for single-valued mappings and investigate the
uniqueness of the fixed point as well. An application is given to the obtained result.

Theorem 3.1 Suppose that (M, δdq) is an L-R-complete function weighted dislocated
quasi-metric space with respect to (h, C) ∈ γ × [0, +∞). Let S : M → M be a mapping,
F : (0, +∞) →R be a strictly increasing mapping, τ > 0, μ1,μ2,μ3,μ4 ≥ 0, η1 = μ1+μ2

1–μ3–μ4
< 1

and η2 = μ1+μ3
1–μ2–μ4

< 1 such that

τ + max
{
F

(
δdq(Sg, Sw)

)
,F

(
δdq(Sw, Sg)

)}

≤ min

{
F

(
μ1δdq(g, w) + μ2δdq(g, Sg) + μ3δdq(w, Sw) + μ4

δdq(g, Sg).δdq(w, Sw)
1 + δdq(g, w)

)
,

F
(

μ1δdq(w, g) + μ2δdq(Sg, g) + μ3δdq(Sw, w) + μ4
δdq(Sg, g).δdq(Sw, w)

1 + δdq(w, g)

)}
, (3.1)

where, g, w ∈ M. Then there exists a unique fixed point of S.

Proof The proof of Theorem 3.1 is similar to the proof of Theorem 2.1. Here we prove only
uniqueness. Suppose that g∗ and w∗ are the two distinct fixed points of S, then δdq(g∗, w∗) >
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0. By inequality (3.1), we have

τ + F (δdq
(
g∗, w∗) ≤ τ + max

{
F (δdq

(
Sg∗, Sw∗),F (δdq

(
Sw∗, Sg∗)}

≤F
(

μ1δdq
(
g∗, w∗) + μ2δdq

(
g∗, Sg∗) + μ3δdq

(
w∗, Sw∗)

+ μ4
δdq(g∗, Sg∗).δdq(w∗, Sw∗)

1 + δdq(g∗, w∗)

)
,

τ + F (δdq
(
g∗, w∗) ≤F

(
μ1δdq

(
g∗, w∗)),

δdq
(
g∗, w∗) < μ1δdq

(
g∗, w∗),

δdq
(
g∗, w∗) < δdq

(
g∗, w∗).

As δdq(g∗, w∗) > 0, therefore a contradiction arises. So, we have g∗ ∈ M, a unique fixed point
of S. �

Remark By taking a bi-complete function weighted quasi-metric space, μ2 = μ3 = μ4 = 0,
τ > 0, and F (α) = ln(α) in Theorem 3.1, we obtain the result of Karapınar et al. [17] as
follows.

Corollary 3.2 Let (M, δq) be a bi-complete function weighted quasi-metric space and S be
a mapping from M to M. Suppose that there exists k = μ1e–τ ∈ (0, 1) such that

δq(Sg, Sw) ≤ kδq(g, w), g, w ∈ M. (3.2)

Then S possesses a unique fixed point g ∈ M.

Remark By taking a bi-complete function weighted quasi-metric space, μ1 = μ4 = 0 and
μ2 = μ3, τ > 0 and F (α) = ln(α) in Theorem 3.1, we obtain the result of Karapınar et al.
[17] as follows.

Corollary 3.3 Let (M, δq) be a bi-complete function weighted quasi-metric space and S be
a mapping from M to M. Suppose that there exists μ = μ2e–τ ∈ (0, 1/2) such that

δq(Sg, Sw) ≤ μ
[
δq(g, Sg) + δq(w, Sw)

]
, g, w ∈ M. (3.3)

Then S possesses a unique fixed point g ∈ M.

Now we discuss the solution of Volterra type integral equation which is an application
of Theorem 3.1. Consider the equation

m(r) =
∫ r

0
H

(
r, q, m(q)

)
dq (3.4)

for all r, q ∈ [0, 1]. For solution of (3.4), we follow the following process.
Let M be a collection of all real-valued continuous functions on [0, 1] endowed with

the L-R-complete function weighted dislocated quasi-metric space. Define the supremum
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norm as ‖m‖τ = supr∈[0,1]{|m(r)|e–τ r} for m ∈ M, where τ > 0. Now, define

δτ
dq(m, z) =

[
sup

r∈[0,1]

{∣∣2m(r) + 3z(r)
∣∣e–τ r}

]2
= ‖2m + 3z‖2

τ

for all m, z ∈ M, with these settings, (M, δτ
dq) becomes an L-R-complete function weighted

dislocated quasi-metric space.
Let us prove the theorem given as under to make sure the existence of solution of (3.4).

Theorem 3.4 Suppose that the following conditions are satisfied:
(i) H : [0, 1] × [0, 1] × C([0, 1],R+) →R+;

(ii) S : M → M is defined by

Sm(r) =
∫ r

0
H

(
r, q, m(q)

)
dq.

Suppose that τ > 0 exists, such that

max
{

2H(r, q, m) + 3H(r, q, z), 2H(r, q, z) + 3H(r, q, m)
} ≤ τN(m, z)eτq

τN(m, z) + 1

for m, z ∈ C([0, 1],R+) and for all r, q ∈ [0, 1], where

N(m, z) = μ1‖2m + 3z‖2 + μ2‖2m + 3Sm‖2 + μ3‖2z + 3Sz‖2

+ μ4
‖2m + 3Sm‖2.‖2z + 3Sz‖2

1 + ‖2m + 3z‖2 ,

where τ ,μ1,μ2,μ3,μ4 > 0 and μ1 + μ2 + μ3 + μ4 < 1. Then (3.4) has a unique solution.

Proof By supposition (ii)

∣∣max{2Sm + 3Sz, 2Sz + 3Sm}∣∣

= max

{∫ r

0

(
2H(r, q, m) + 3H(r, q, z)

)
dq,

∫ r

0

(
2H(r, q, z) + 3H(r, q, m)

)
dq

}

<
∫ r

0

τN(m, z)
τN(m, z) + 1

eτq dq

=
τN(m, z)

τN(m, z) + 1

∫ r

0
eτq dq,

∣∣max{2Sm + 3Sz, 2Sz + 3Sm}∣∣ <
τN(m, z)(eτ r – 1)
(τN(m, z) + 1)τ

<
N(m, z)eτ r

τN(m, z) + 1
,

∣∣max{2Sm + 3Sz, 2Sz + 3Sm}∣∣e–τ r <
N(m, z)

τN(m, z) + 1
,

∥∥max{2Sm + 3Sz, 2Sz + 3Sm}∥∥
τ

<
N(m, z)

τN(m, z) + 1
.
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This implies

τN(m, z) + 1
N(m, z)

<
1

‖max{2Sm + 3Sz, 2Sz + 3Sm}‖τ

.

That is,

τ +
1

N(m, z)
<

1
‖max{2Sm + 3Sz, 2Sz + 3Sm}‖τ

.

This further implies

τ –
1

‖max{2Sm + 3Sz, 2Sz + 3Sm}‖τ

<
–1

N(m, z)
,

τ + max

{
–1

‖2Sm + 3Sz‖ ,
–1

‖2Sz + 3Sm‖
}

<
–1

N(m, z)
.

For F (z) = –1√
z ; z > 0 and δτ

dq(m, z) = ‖2m + 3z‖2
τ , the conditions of Theorem 3.1 are fulfilled.

Hence the Volterra integral equation given in (3.4) has a unique solution. �

4 Conclusion
The notion of a function weighted L-R-complete dislocated quasi-metric space has been
introduced. The condition δdq(g, g) = 0 from function weighted quasi-metric space has
been excluded. The concept of bi-completeness has been generalized by introducing the
concept of L-R-completeness. We have established fixed point results fulfilling generalized
rational type F-contraction for a multivalued mapping in this new framework. We have
presented results for single-valued mappings and have investigated the uniqueness of the
fixed point as well. An application and an example have also been constructed.
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