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Abstract: Cancer is a major burden of disease globally. Each year, tens of millions of people are diag-
nosed with cancer worldwide, and more than half of the patients eventually die from it. Significant
advances have been noticed in cancer treatment, but the mortality and incidence rates of cancers are
still high. Thus, there is a growing research interest in developing more effective and less toxic cancer
treatment approaches. Curcumin (CUR), the major active component of turmeric (Curcuma longa
L.), has gained great research interest as an antioxidant, anticancer, and anti-inflammatory agent.
This natural compound shows its anticancer effect through several pathways including interfering
with multiple cellular mechanisms and inhibiting/inducing the generation of multiple cytokines,
enzymes, or growth factors including IκB kinase β (IκKβ), tumor necrosis factor-alpha (TNF-α),
signal transducer, and activator of transcription 3 (STAT3), cyclooxygenase II (COX-2), protein kinase
D1 (PKD1), nuclear factor-kappa B (NF-κB), epidermal growth factor, and mitogen-activated protein
kinase (MAPK). Interestingly, the anticancer activity of CUR has been limited primarily due to its poor
water solubility, which can lead to low chemical stability, low oral bioavailability, and low cellular
uptake. Delivering drugs at a controlled rate, slow delivery, and targeted delivery are other very
attractive methods and have been pursued vigorously. Multiple CUR nanoformulations have also
been developed so far to ameliorate solubility and bioavailability of CUR and to provide protection
to CUR against hydrolysis inactivation. In this review, we have summarized the anticancer activity
of CUR against several cancers, for example, gastrointestinal, head and neck, brain, pancreatic,
colorectal, breast, and prostate cancers. In addition, we have also focused on the findings obtained
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from multiple experimental and clinical studies regarding the anticancer effect of CUR in animal
models, human subjects, and cancer cell lines.

Keywords: Curcuma longa; curcumin; anticancer; mechanism of action; cellular mechanisms;
nanoformulations

1. Introduction

Globally, cancer is the second leading cause of death and is one of the main causes
of public health problems. In 2018 alone, there were about 1.73 million new cancer cases
and over 609,000 cancer-related deaths in the United States [1]. Although there are some
noticeable advances in cancer treatment, the occurrence of cancer and mortality rate has
not decreased in the last 30 years [2]. In the case of treatment and prevention of cancer,
improved knowledge regarding molecular changes that contribute to the development and
advancement of cancer is crucial. Various common approaches can be used to target specific
cancer cells in order to suppress the development of tumor, metastasis, and progression
without exerting serious side effects [3]. Along with the chemically synthesized anticancer
drugs, various anticancer agents have been extracted from several plants including Curcuma
longa (C. longa), Erythroxylumprevillei, Cephalotaxus species, Betula alba, Catharanthusroseus,
and Taxusbrevifolia [2,4]. Furthermore, it has been demonstrated that numerous plant
species exhibit anti-cancer properties and there is a growing interest regarding these plants,
particularly in developing countries [5–10].

Curcumin (CUR) (Figure 1) is a polyphenolic compound extracted from C. longa
(turmeric) rhizomes. In 1815, this compound was first isolated by two scientists, namely,
Pelletier and Vogel [11]. Following this discovery, there was a growing research interest
regarding CUR, which led to the identification of the numerous health benefits of CUR.
This polyphenolic compound is also familiar as diferuloylmethane. Its molecular weight
is 368.38 and its chemical formula is C21H20O6 [12]. CUR has shown its activity against
multiple chronic diseases including neurodegenerative disorders, obesity, liver disease,
metabolic syndrome, arthritis, inflammation, and multiple cancers [13,14]. Indeed, CUR
is a highly effective candidate in cancer treatment as a single-drug therapy or in com-
bination with other therapeutic agents.This natural compound also has the capacity to
influence various molecular targets and signaling mechanisms that are linked with various
cancers [15,16].
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Figure 1. Chemical structure of curcumin.

In this article, we have summarized CUR’s anticancer activity against several cancers
such as gastrointestinal, brain, head and neck, pancreatic, prostate, breast, and colorectal
cancers. Furthermore, we also focused on the findings obtained from several experimental
and clinical studies regarding the anticancer action of CUR in animal models, human
subjects, and cancer cell lines.
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2. Mechanism of Action of Curcumin as an Anticancer Agent

An imbalance between cell death and cell proliferation is regarded as one of the major
causal factors of cancer [17]. Uncontrolled cell proliferation is likely to occur if the cells
skip death, which can lead to various types of cancers [18]. The intrinsic and extrinsic
pathways are responsible for generating apoptotic signals. It has been found that the
intrinsic pathway plays a role via inducing the mitochondrial membrane to suppress the
expressions of B-cell lymphoma-extra large and B-cell lymphoma 2 (Bcl-2) [19]. CUR has
the ability to disrupt the balance of mitochondrial membrane potential, which can result
in increased Bcl-xL suppression [20]. On the other hand, the extrinsic apoptotic pathway
functions via inducing the tumor necrosis factor (TNF)-associated apoptosis and elevating
the death receptors (DRs) on cells. In this pathway, CUR plays a role via upregulating
DR4 and DR expression [21–23]. It has been revealed by in vitro studies that CUR and its
derivatives can excellently stimulate apoptosis in various cell lines through downregulating
or suppressing intracellular transcription factors. These transcription factors include matrix
metalloproteinase-9 (MMP-9), signal transducer and activator of transcription 3 (STAT3),
cyclooxygenase II (COX-2), activator protein 1 (AP-1), nuclear factor-kappa B (NF-κB),
and nitric oxide synthase [24,25]. CUR can also exert its anticancer effect via reducing
lactate production and uptake of glucose in cancer cells through pyruvate kinase M2
(PKM2)downregulation. PKM2 suppression was found to be attained by inhibiting the
mammalian target of rapamycin-hypoxia-inducible factor 1α (mTOR-HIF1α) [26]. Multiple
analyses have examined the capacity of CUR and derivatives of CUR to inhibit several
types of cancers through interacting with various molecular targets (Figure 2).
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In CL-5 xenograft tumors, CUR can trigger apoptosis and caused downregulation of
cyclin D1, c-Met, Akt, and epidermal growth factor receptor (EGFR) [27]. Furthermore,
CUR suppressed metastasis and lung cell invasion via upregulating the expression of
HLJ1 in cancer cells [28]. Along with the activity of CUR on nuclear factor-κB (NF-κB)
and STAT3 signaling cascades, CUR also suppressed cell cycle arrest and cell proliferation
and induced apoptosis by modulating other transcription factors including PPAR-α, Hif-1,
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Notch-1, β-catenin, p53, Erg-1, and AP-1 [29]. It has been confirmed that CUR suppressed
the phosphorylation of focal adhesion kinase (FAK) and increased the expression of multi-
ple extracellular matrix (ECM) components, which further contribute to metastasis and
invasion. In a concentration-dependent manner, CUR also increased cell adhesion via
inducing various ECM components including fibronectin, laminin, collagen IX, collagen IV,
collagen III, and collagen I. Collectively, these findings have indicated that CUR inhibits
FAK action via suppression of its phosphorylation sites and triggers ECM components
to improve cell adhesion, which can eventually prevent cell migration and detachment
of cancer cells. It was reported that suppression of FAK expression resulted in elevated
cell adhesion, which eventually playeda role in the anti-invasive activity of CUR [30]. In
colorectal cancer cells, CUR decreased the expression of CD24 in a dose-dependent manner.
In addition, expression of E-cadherin was elevated by CUR and played a role as a sup-
pressor of epithelial-mesenchymal transition. In colorectal cancer cells, CUR may exhibit
its action against metastasis by downregulating CD24, FAK, and Sp-1, and upregulating
the expression of E-cadherin [30]. In a study, Zhou et al. [30] assessed the activity of 11
CUR-associated compounds (comprising a benzyl piperidone moiety) in various cancer
cell lines. Furthermore, they observed that some of these compounds decreased the level
of the phospho-extracellular signal-regulated kinase (Erk)1/2 and phospho-Akt [30]. It has
been reported that autophagy and ER stress might have a significant contribution in the
case of apoptosis, which is triggered via the CUR analogue B19 in hepatocellular carcinoma
cells and the epithelial ovarian tumor cell line, and that suppression of autophagy may
elevate CUR analogue-triggered apoptosis via stimulating severe ER stress. In ovarian
cancer cell lines, this CUR analogue might also induce apoptosis, autophagy, and ER stress
in vitro [31,32]. It was confirmed that autophagy may play role in programmed cell death
type II and might effectively inhibit the growth of malignant glioma cells after treatment
with CUR [33].

3. Bioavailability of Curcumin

CUR is safer to use and it has great potential as an anticancer agent. However, its
major drawback is its poor oral bioavailability, which takes place because of its substantial
first-pass effect and low aqueous solubility [34–39]. At tumor sites, increased permeability
and retention action of nanomaterials might ameliorate the buildup of chemotherapeutic
agents. In this regard, for instance, micelles, dendrimers, carbon nanotubes, and liposomes,
have been utilized as carriers for cisplatin, paclitaxel, doxorubicin, and SN38 in order to
decrease adverse effects and improve concentrations of drugs in tumors [39–44]. Increased
solubility of chemotherapeutic drugs is another benefit of utilizing nanomaterials as drug
carriers. There is a growing interest in self-assembling peptide nanofibers due to their
easy modification, good biocompatibility, and design flexibility by a “bottom-up” tech-
nique [45,46]. These nanofibers have been extensively utilized in several cell cultures and
also in drug delivery systems to decrease adverse effects, ameliorate buildup at the tumor
site, and improve the solubility of a hydrophobic drug [47]. The enhanced anticancer
activity has been observed with the nanofiber-encapsulated antitumor agents including
ellipticine, camptothecin, and paclitaxel [48–50]. Several studies have confirmed that as
drug carriers, the 2-dimensional structure of peptide nanofibers is much better compared
to the 3-dimensional structure of nanoparticles. In a study, Wagh et al. [51] showed that
peptide-based nanofibershada rapid elimination rate, improved tumor targeting within a
shorter period, and better biocompatibility compared to carbon rods, and spherical nano-
materials (selenium and cadmium quantum dots, poly(lactic-co-glycolic acid) or PLGA,
cadmium, gold, and polystyrene).

CUR has been widely studied and several synthetic analogues of CUR have been
generated and analyzed for potential therapeutic effects [52–59]. Some of these analogues
showed excellent actions in several cancer animal models and cell lines. It has been re-
vealed by studies that CUR-associated compounds containing benzyl piperidone possess
increased biological effects and absorption [60,61]. In addition, studies have also confirmed
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effective anticancer activities of CUR analogues [62–65]. The introduction of CUR into
nano-formulations to increase water-solubility has outstandingly transformed its bioavail-
ability. Moreover, nano-formulations have enhanced the transport and improved in vitro
CUR levels in the cell, whereas their extended-release formulas as well as their increased
compatibility appear to be excellent for their in vivo activities [66–68].

4. Therapeutic Activity of Curcumin Nanoformulations

Several CUR nanoformulations (Table 1) have been developed so far. Among them,
most of these nanoformulations have focused on ameliorating the solubility and bioavail-
ability of CUR and providing protection to the CUR against inactivation via hydrolysis.
Some nanoformulations have focused on prolonged retention and circulation in the body,
whereas the rest of them concentrated on intracellular release mechanisms and cellular
delivery. Multiple nanoformulations of CUR have significant contributions in various
pharmaceutical applications and have been demonstrated to have beneficial effects in the
diagnosis of multiple human diseases.

Table 1. Nanoformulations of curcumin and their therapeutic effects in various cancer models.

Nanoformulations Cancer Models Major Effects References

Liposomes Melanoma, colorectal cancer, and
lung cancer

Enhanced bioactivity; antimelanoma effects;
increased encapsulation efficiency; increased

anticancer effect
[69–76]

Polymers Colorectal cancer

Inhibited tumor growth; increased growth
suppression in cancer cells as compared to free

curcumin (CUR); enhanced cellular uptake;
improved anticancer effect

[77–81]

Gold nanoparticles Prostate and colorectal
cancer cells

Ameliorated antioxidant activity; improved
stability and solubility; increased

biocompatibility and anticancer effect
[82–84]

Magnetic nanoparticles Cancer and inflammatory cells

Ameliorated cellular uptake; potent targeting
ability of CUR; controlled delivery of CUR;

increased biocompatibility and
anticancer activity

[85–89]

Solid lipid nanoparticles
(SLNs) Breast cancer lines

Prolonged blood circulation, enhanced
anti-inflammatory activities; improved

anticancer effect
[90–95]

Conjugates Breast cancer Enhanced stability, solubility, and
bioavailability; potent anticancer effect [96–98]

Cyclodextrins
Lung, breast, pancreatic,
colorectal, and prostate

cancer cells

Increased solubility, bioavailability,
antiproliferation, and anticancer effects [99–104]

Solid dispersions Breast tumor
Prolonged survival, antitumor and

anti-metastatic activity; Increased stability,
bioavailability and anti-inflammatory effects

[105–108]

Micelles Lung tumor and colorectal cancer

Improved solubility and bioavailability;
extended life, targeted delivery of drug;
increased chemical stability; improved

anticancer and antitumor activities

[109–115]

Nanospheres Breast cancer and melanoma cells Potent antimicrobial and anticancer activities;
effective targeted drug delivery [116–120]

Nanogels Colorectal cancer, pancreatic
cancer and skin cancer cells

Controlled and targeted release of drug;
prolonged circulation; increased bioavailability;

improved anticancer activity
[121–125]

Nanodisks Mantle cell lymphoma Ameliorated biological action and apoptosis to
mantle cell lymphoma and anticancer effect [126–128]
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4.1. Liposomes

Liposomes are spherical vesicles that are composed of multiple or single phospholipid
bilayers that closely resemble the structure of the cell membrane [129]. Indeed, liposomes
are perfect delivery vehicles for biologically active substances both in vivo and in vitro.
There are several benefits of liposomes including greater stability, high biodegradability,
and biocompatibility, easy preparation, flexibility, controlled distribution, targeting specific
cells, better solubility, and low toxicity [81]. Therefore, liposomes are considered as the
most potential drug-carrier system up until now and are preferred by scientists. Liposome’s
diameter ranges between 2.5 and 25 mm. Indeed, the size of the vesicle is a crucial factor
to estimate the circulation time of liposomes and the amount of drug capsulation in
liposomes is affected by the number and size of bilayers [130]. Numerous studies have
reported that liposome helps in solubilizing CUR in the phospholipid bilayer and permits
CUR to be dispersed over an aqueous medium and elevates the effects of CUR [131]. In
addition, the accumulation of liposomal drugs is mainly observed in bone marrow, lung,
spleen, liver, or other organs and tissues. This further helps to decrease side effects and
ameliorate the drug therapeutic index. Various studies have also found that liposomal
CUR is the most appropriate way to provide treatment to multiple cancer diseases. In a
study, Dhule et al. [132] reported that liposomal CUR suppressed the growth of the MCF-7
breast cancer cell line and KHOS OS cell line and exerted a potent in vitro and in vivo
anticancer effect. In PC-3 human prostate cancer cells, biochemical processes and antitumor
efficiency induced via CUR liposomes have been analyzed [133]. The survival rate of
CUR liposomes in PC-3 cells was comparatively lower and time-dependent compared to
free CUR. Moreover, liposomes promoted the absorption of CUR into the cell, and the
period of cell fluorescence intensity was longer and higher in comparison with the control
group. Furthermore, expression levels of matrix metalloproteinase-2 (MMP-2)-messenger
RNA (mRNA) and its proteins were detected by reverse transcription-polymerase chain
reaction and western blotting. It was revealed that expression levels of MMP-2-mRNA
and its proteins were gradually decreased along with the rise inconcentrations of CUR
liposomes. In PC-3 cells, it was indicated that CUR liposomes mediated intake of drug-
loaded liposomes to improve the cytotoxic effects of intracellular drugs. PC-3 cells were
simultaneously suppressed via the downregulation of MMP-2 concentrations. In a different
study, Tefas et al. [71] developed the liposomes coencapsulating CUR and doxorubicin
that decreased the cell proliferation in C26 murine colon cancer and exhibited improved
cytotoxic effect compared to its free form. It has been revealed by in vitro study that
liposomal CURtreatment resulted in apoptosis [poly (ADP-ribose) polymerase] and dose-
dependent growth suppression [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium salt] in two human colorectal cancer cell lines (including
Colo205 and LoVo cells) [134]. In a similar manner, liposomes coencapsulating resveratrol
and CUR exhibited high encapsulation efficiency, polydispersity index, and lower particle
size [76]. Interestingly, it was observed that a combination of blue light-emitting diode
(BLED) and CUR liposome nanocarriers (LIP-CUR) stimulated photodynamic therapy
(BLED-PDT) generated excellent anticancer effect and bioactivity [74]. In addition, they
demonstrated that aqueous-soluble F127-CUR (a novel BLED-PDT-based system) has the
capacity to mediate CUR’s anticancer effect and facilitate BLED-PDT-mediated apoptosis.
Aqueous-soluble F127-CUR markedly elevated the BLED-PDT activity in the cancer cell
compared to free CUR. Collectively, these findings suggest that liposomes might be effective
as carriers for CUR.

4.2. Nanoparticles

The diameter of nanoparticles ranges between 1 and 100 nm, which can be beneficial
for drug delivery due to the unique physical, biological, and chemical properties [135].
Indeed, nanoparticles are one thousand times smaller compared to the average human
body cell and composed of ingredients that are engineered at the molecular or atomic level.
Nanoparticles containing encapsulating drugs have the ability to induce the solubility and
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pharmacokinetics of drugs, which further offer controlled release and targeted delivery
of therapeutic agents [136]. Albumin, gold, magnetic, solid lipid, and polymer-based
nanoparticles have been widely used to ameliorate the therapeutic applications of CUR.

4.2.1. Polymeric Nanoparticles

Since polymeric nanoparticles are small in size and biocompatible, these particles
can circulate in the blood for a long time [137]. Numerous natural and synthetic poly-
mers have already been identified and used for the production of CUR nanoparticles
such as chitosan, hydrophobically modified starch, N-vinyl-2-pyrrolidone, silk fibroin,
polyethylene glycol monoacrylate [NIPAAM (VP/PEG A)], PLGA, polyvinyl alcohol, and
N-isopropylacrylamide (NIPAAM) [138]. Chang et al. [139] analyzed the molecular pro-
cesses activated via CUR loaded-poly(lactic-co-glycolic acid) (PLGA) nanoparticles in the
case of CAL27 cisplatin-resistant cancer cells (CAR cells). The obtained data indicated
that CUR loaded-PLGA nanoparticles regulated the effect of multiple drug resistance
protein 1 and the development of reactive oxygen species (ROS) in CAR cells via causing
activation of the intrinsic apoptotic mechanism. Compared to native CUR, CUR-loaded
PLGA nanoparticlesare more potent in treating CAR cells in conjunction with better in vivo
bioavailability and increased in vitro bioactivity. Interestingly, CUR loaded polymeric
nanoparticles by means of the Eudragit R E100 cationic copolymer increased the binding
and cellular uptake of polymeric nanoparticles, which further increased the cytotoxic
effect. Collectively, this formulation of nanoparticles inhibited the growth of tumors and
stated 19-times greater growth suppression of colon-26 cells in comparison with the CUR
alone [79]. In addition, CUR silk fibroin (CUR–SF) nanoparticles exerted more steady
delivery to the colon cancer cells and showed potent anticancer activity compared to its
free form in HCT116 cells. It was also summarized that CUR–SFs controlled release has the
ability to ameliorate cellular CUR uptake into cancer cells and decrease the cytotoxic effects
in normal cells [80]. Khan et al. [140] demonstrated that CUR loaded-PLGA nanoparticles
couldsignificantly inhibit increased concentrations of nuclear p65 and hypoxia-inducible
factor 1-alpha in lung and breast cancer cells.

4.2.2. Solid Lipid Nanoparticles

Solid lipid nanoparticles contain colloidal submicron particles that are produced via
synthetic or natural lipids dispersed in water or aqueous surfactants. Moreover, these
nanoparticles are biocompatible, stable, and easily scalable drug delivery systems, along
with an increased drug to lipid ratio, which ameliorates the solubility of poorly soluble
drugs [141]. It was revealed that solid lipid CUR nanoparticles showed increased solubility
compared to native CUR and decreased theeffect of the lipopolysaccharide (LPS)-stimulated
pro-inflammatory mediators interleukin (IL)-6, PGE2, and NO via hindering activation
of nuclear factor kappa B (NF-κB) [142]. In a study, Sun et al. [143] revealed that CUR
solid lipid nanoparticles (CUR–SLNs) showed prolonged cellular uptake and obstruction
of growth in cancer cells with enhanced chemical stability and dispersibility of the drug.
CUR–SLNs were analyzed for their anticancer effects in breast adenocarcinoma cells
(MDA-MB-231). Furthermore, CUR–SLNs exhibited increased support and solubility to
drug release compared to native CUR. CUR-SLNs also stimulated considerably increased
apoptosis in MDA-MB-231 cells. Collectively, these observationssuggest that the use of
CUR-SLNs might be beneficial in cancer treatment [141]such as CURC–SLNs combined
with doxorubicin and utilized to overcome the Pgp-induced chemoresistance in triple-
negative breast cancer cells. Indeed, this formulation was found to be efficient and safe
because of its lower toxicity and increased biocompatibility [93]. Wang et al. [144] exhibited
through western blot analysis that the CUR–SLNs mediated Bax/Bcl-2 ratio, however,
reduced the expression of cyclin-dependent kinase 4 (CDK4) and cyclin D1. These findings
indicate that CUR–SLNs might be used as an effective and beneficial chemotherapeutic
agent in the treatment of breast cancer [144].
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4.2.3. Magnetic Nanoparticles

Magnetic nanoparticles (MNPs) are composed of a metallic oxide core or metal that
might be functionalized within an inorganic metal or polymer coating. Furthermore, this
coating demonstrates the biocompatibility and stability of the magnetic nanoparticles. They
can also be simply manipulated in shape, chemical properties, and size. MNPs contain
distinctive physical properties. Moreover, they have a low production cost and are bio-
compatible with the human body [145]. In the case of pancreatic cancer, Yallapu et al. [146]
assessed the in vivo and in vitro therapeutic effectiveness of MNP-CUR formulation. Fur-
thermore, effective internalization of MNP–CUR was observed in human pancreatic cancer
cells (Panc-1 and HPAF-II) in a dose-dependent manner, which eventually resulted in
effective suppression of growth of Panc-1 and HPAF-II cells in colony formation and cell
proliferation assays [146]. In cancer cells, iron oxide nanoparticle core covered by cyclodex-
trins (CDs) and pluronic polymer (F68) with CUR exhibited increased uptake. It was
observed that this formulation suppressed the potential of the mitochondrial membrane
and generated more ROS compared to unformulated CUR. Moreover, it exerted a potent
anticancer activity along with magnetic targeting capacities and resonance imaging char-
acteristics [85]. In lymphocyte cells, the sustainable delivery of thiolated starch-coated
iron oxide nanoparticles comprising CUR showed enhanced compatibility of the system.
In cancer cell lines, it showed cytotoxicity because of its increased drug encapsulation,
loading efficiency, and stability [87]. In a different study, CUR-loaded Fe3O4-MNPs exhib-
ited enhanced uptake, which is beneficial for release of the drug in tumor tissues. This
formulation was found to be accompanied by imaging applications in tumor tissues [88]. It
has been demonstrated that MNPs decorated with PEGylatedCUR(MNP@PEG-CUR) can
act as highly biocompatible drug carriers for anti-tumor medicine [89].

4.2.4. Albumin

Indeed, albumin is the perfect material and desirable protein carrier for the delivery of
drugs because of its biodegradable, biocompatible, nontoxic, and high binding ability with
various drugs. Kim et al. [147] reported that CUR-loaded human serum albumin (HSA)
nanoparticles (CUR–HSA–NPs) showed increased in vivo antitumor effect in comparison
with the unformulated CUR, with no toxicity in a tumor xenograft animal model. In
addition, this analysis indicated that this formulation is an effective drug delivery system
for CUR in the cancer treatment. In breast cancer lines, Thadakapally et al. [148] revealed
that PEG–albumin–CUR nanoparticles exerted a marked anti-cancer effect, along with
better solubility and stable long circulation. In terms of cytotoxicity to Mia Paca-2 cells,
Kim et al. [149] reported that paclitaxel/CUR HSA–NPs were effectively internalized into
Mia Paca-2 cells and showed a 71% enhancement in IC50 versus paclitaxel HSA–NPs.
Collectively, these findings indicate that paclitaxel/CUR HSA–NPs can be effectively used
as anti-cancer agents in combination therapy [149].

4.2.5. Gold Nanoparticles

Gold nanoparticles possess novel catalytic and optical properties that are biocom-
patible and non-toxic and have gained substantial interest in various applications. Gold
nanoparticles produced with plant extracts are extensively used in various biomedical ap-
plications [83]. Indeed, the colloidal stability of these particles retains the physicochemical
activities unchanged. Therefore, no alterations will take place in the biological property
of the particles.In a study, CUR-encapsulated chitosan-graft-poly (N-vinyl caprolactam)
nanoparticles containing gold nanoparticles (Au–CRC–TRC–NPs) were used for targeted
drug delivery and to reveal apoptosis to colon cancer cells [82]. Nambiar et al. [83] pro-
duced CUR gold nanoparticles (CUR–AuNPs) by utilizing a cell-culture medium along
with or without fetal bovine serum and demonstrated their anticancer activities in human
prostate cancer cells. Gold nanoparticles containing CUR (CWAuNPs) were evaluated for
their in vitro activities in renal cancer cells. The findings demonstrated that CWAuNPs
stimulated apoptosis in the renal carcinoma cell line A498 and were an effective anticancer
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agent [150]. Similarly, activities of CUR-green generated gold nanoparticles (AuNPs–CUR)
were assessed in cell lines of the breast and colon cancers, MCF-7 and HCT-116, respec-
tively. In addition, it was also shown that AuNPs–CUR possesses high apoptotic and
antiproliferative activities against cancer cells in comparison with the native CUR [84]. In a
different study, Kondath et al. [151] demonstrated the synergistic activity generated via
gold core and CUR against breast cancer cells. They also revealed that CUR–AuNPs get
coated via proteins in a biological medium, which eventually helps in their endocytosis.
Furthermore, within the cells, cAuNPs induced ROS generation, which then subsequently
depleted mitochondrial membrane potential. As a result, Bax was released, which activated
DNA fragmentation and PARP cleavage [151]. Indeed, these findings suggest the potential
of CUR-AuNPs as an effective chemotherapeutic agent.

4.3. Conjugates

The complex generated from the combination of two or more molecules, particu-
larly by the covalent bond, is denoted as conjugates. CUR conjugation with hydrophilic
polymers and small molecules can raise its solubility as well as oral bioavailability. It
has been reported by Manju and Sreenivasan [96] that CUR conjugation with hyaluronic
acid reduces the effects of gold nanoparticles (AuNPs) and ameliorates its aqueous sta-
bility and solubility [96]. Muangnoi et al. [152] produced CUR-glutaric acid (CURDG)
prodrug via ester linkage and evaluated in mouse models. It has been observed that gold
nanoparticle–PVP–CUR conjugate (PVP–C–AuNPs) obstructs the aggregation of Aβ(1–6)
along with prolonged drug release, increased CUR bioavailability, and loading efficiency
(80%) [97]. Piperine (an alkaloid derived from black pepper) is a strong enhancer of CUR
bioavailability [153]. Furthermore, this alkaloid plays a role in the brush borders of the
intestinal lining, which further resultsin enhanced absorption of the compound. It has
also been reported that piperine plays a role in cell metabolism through suppression of
cytochrome p450s and UDP glucuronosyl transferases. Moreover, piperine exerts its action
on p-glycoprotein [154]. In human or animal models, co-administration of piperine with
CUR significantly elevated the serum level of CUR by 2000-fold because of the extensive ab-
sorption and bioavailability of CUR with no adverse events [155]. Tang et al. [156] reported
that poly-CURs showed cytotoxicity toward cancer cells, however, a polyacetal-based
poly-CUR showed increased cytotoxicity toward MCF-7 breast cancer cell lines and the
OVCAR-3 and SKOV-3 ovarian cancers. Furthermore, they can be rapidly taken up by the
lysosomes of cancer cells, wherein polyacetal-based poly-CUR hydrolyzed and released
active CUR. In SKOV-3 cells, it arrested the G0/G1 phase of the cell cycle in vitro and
stimulated apoptosis of cells partly via the caspase-3 dependent cascade. In the SKOV-3
intraperitoneal (i.p.) xenograft tumor model, intravenous injection of polyacetal-based
poly-CUR resulted in a significant antitumor effect [156].

4.4. Cyclodextrins (CD)

Indeed, α-, β-, and γ-CDs are multi-component hybrid, soluble carrier systems that
carry non-covalent bound drugs. Cyclodextrins(CDs) are bucket-shaped oligosaccharides
composed of 6 (α-), 7 (β-), or 8 (γ-) D-glucopyranose units that are linked via an α-1,4-
glycosidic bond to produce macrocycles [103,157]. Interestingly, β-CD, γ-CD, and their
derivatives were extensively utilized to deliver the drugs because of their adaptability,
relatively easy synthesis, and low price. In recent times, numerous researchers have
demonstrated the importance of CD in the CUR delivery system [158]. Yallapu et al. [99]
prepared a β-CD facilitated CUR drug delivery system and revealed that β-CD-CUR
elevated CUR distribution in prostate cancer cells in comparison with the unformulated
CUR and increased its therapeutic value. In a study, Zhang et al. [159] observed that
the β-cyclodextrin-CUR (CD15) formulation showed increased cytotoxicity compared to
normal CUR via cell cycle arrest and pro-apoptotic activities of lung cancer cells [159]. In
addition, experimental observations of this study recommended that CD15 is an effective
system for enhancing CUR delivery and its therapeutic efficiency in lung cancer. On the
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other hand, nanoparticles were developed by utilizing sulfobutyl-ether-β-cyclodextrin,
hyaluronic acid, and chitosan and without or with CUR and utilized to treat colorectal
cancer and intestinal epithelial cells. It was reported that CUR nanoparticles exhibited
increased stability and encapsulation efficiency. Moreover, it reduced the CUR cytotoxicity
in normal intestinal epithelial cells and decreased the proliferation of cancer cells [102].
The water-soluble complex of CUR with CD ameliorated solubility and mediated extended
release of drugs in retinitis pigmentosa. Interestingly, the findings aided the formulation of
eye drops from phytochemicals derived from natural resources [104]. Zhang et al. [159]also
assessed the cellular uptake and anticancer effect of CUR-CDs. They observed that CUR-
CDs improved delivery of CUR and ameliorated CUR’s in vitro and in vivo therapeutic
efficacy compared to free CUR. Thus, via regulating the mitogen-activated protein kinase
(MAPK)/NF-κB signaling pathway, CUR-CDs downregulated CyclinE-CDK2 combination,
upregulated the p53/p21 signaling cascade, and elevated the expression of Bax/caspase-3
to trigger G1-phase arrest and cellar apoptosis [159]. Collectively, these findings indicate
that CUR-CDs might be used to ameliorate delivery of CUR and its therapeutic potential
in the case of lung cancer.

4.5. Solid Dispersions

A solid dispersion is the molecular dispersion of two different compounds. Typically,
it is a hydrophobic drug (specifically, CUR in a solid hydrophilic carrier or matrix) [160].
Solid dispersions are being dissolved as small colloidal particles of any aqueous media
in order to release a drug. Moreover, it also reduces the size of the particle to the nano-
range along with improved wet ability, which further leads to the increased oral bio-
distribution and pharmacokinetic properties of drugs. It is known that solid dispersions
are developed via fusion-melt and solvent-based methods, and by joining both solvent
and fusion (hybrid) methods [161]. Researchers developed a CUR–Eudragit® PO solid
dispersion via a solution mixing method to elevate the stability and solubility of CUR
water. In an in vitro transdermal study, the capacity of CUR@EPO as a vehicle to transport
CUR in medicinal applications was confirmed. In a different study, a CUR-Gelucire®50/13
solid dispersion was developed via spray drying that exhibited improved solubility (3600-
fold) in water in comparison with the native CUR. In addition, the anti-inflammatory
effect and bioavailability of CUR were greatly ameliorated via solid dispersion because
of enhanced gastrointestinal absorption [106]. In a similar manner, CUR solid dispersion-
encapsulated temperature-sensitive in situ hydrogels (CSDG) werefound to be effective in
treating vaginal bacterial infection via the sustained and stable release of CUR [108]. In
a study, Song et al. [162] observed that the solid dispersion efficiently elevated intestinal
penetrability and suppressed P-gp activity. In addition, these activities elevated CUR’s anti-
proliferative action in MDA-MB-231 breast cancer cells. Following two hours of incubation
with CUR, the solid dispersion formulation, and its physical mixture led to the differential
cytotoxic activity of paclitaxel via the suppression of the P-gp-induced efflux of paclitaxel
in P-gp overexpressing MDA-MB-231 and Lewis lung carcinoma-PK1-P-gp cells. They
also summarized that whencompared to CUR, a solid dispersion formulation of CUR
with mannitol and D-a-tocopheryl polyethylene glycol succinate might be a promising
option to enhancethe oral bioavailability and efficacy of CUR through increased solubility,
dissolution rate, cell permeability, and P-gp modulation [162].

4.6. Micelles

A micelle is termed as a group of amphiphilic surfactant molecules that instinctively
aggregate in water into a spherical vesicle. Indeed, it is extensively utilized in delivering
poorly water-soluble drugs including CUR [163]. In a breast tumor model, researchers
utilized a one-step solid dispersion method to prepare CUR encapsulated polymeric
micelles (CUR-M) and evaluated CUR-M efficiency. CUR-M was found to be effective in
hindering the spontaneous pulmonary metastasis and growth of breast tumors compared
to unformulated CUR [105]. It was observed that the CUR-poly(ethylene glycol) methyl
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ether (MPEG-PCL) micelle solid dispersion increased the anti-tumor and anti-angiogenesis
activities of CUR. The findings of this study also suggested that CUR micelles might be
effective in treating pulmonary carcinoma [164]. The outcome of several sizes of CUR
encapsulated micelles was evaluated in the in vitro condition for their cytotoxicity in
human colon carcinoma cells, intracellular localization, and cellular uptake. The findings
also indicated that small-sized CUR-loaded micelles have the efficacy to stimulate increased
cytotoxic effects in human colon carcinoma cells in comparison with the larger micelles.
Collectively, these findings suggest that uptake/release kinetics, micelle size, and drug
loading are vital factors that are essential for nanoparticle drug delivery [113]. As compared
to native CUR, it was revealed that CUR loaded into the zein-super hydrophilic zwitterionic
polymers, poly(sulfobetaine methacrylate) (PSBMA) micelles showed improved cellular
uptake, cytotoxicity, and stability in cancer cells, and pharmacokinetics [115]. Li et al. [165]
revealed through the in vitro cytotoxicity assay that CUR micelles were reasonably more
efficient compared to native CUR against multiple cancer cell lines because of the improved
cellular uptake of CUR, which further resulted in the apoptosis of cancer cell lines. In
addition, increased apoptosis of S-65 cancer cells via CUR micelles was observed because
of the downregulation of p-Akt, Blc-2, and p-Rb and activation of caspase-9. It was also
exhibited that intraperitoneal administration of CUR micelles (25 mg/kg) may markedly
suppress the growth of tumors in comparison with the treatment with native curcumin,
along with the reduced expression of vascular endothelial growth factor (VEGF) in tumor
tissue and markedly elevated apoptosis of tumor cells [165].

4.7. Nanospheres and Microcapsules

Nanospheres are referred to as solid matrix particles where the main constituent
(drug) is mixed, nonetheless, microcapsules are composed of the outer polymeric shell and
internal core. Arunraj et al. [116] developed surfactant-free CUR nanospheres (CNSs) and
reported the proof of the anticancer activity of CNSs in breast cancer and osteosarcoma cell
lines [116]. In the case of prostate cancer, spherical and smooth CUR encapsulated PLGA
nanospheres were found to be effective for clinical applications. It has been concluded
by cell viability study that compared to native CUR, CUR encapsulated nanospheres
hadthe capacity to further exert a powerful effect against cancer cells [141]. In breast
cancer cells, dimethyl CUR encapsulated PLGA nanospheres (ASC-J9) were assessed.
PLGA nanospheres were found to be effective in delivering ASC-J9 intracellularly, which
is crucial for arresting estrogen-dependent MCF-7 cancer cell growth [166]. Scientists
have successfully encapsulated CUR into polyethylene glycol–polylactic acid (PEG–PLA)
nanospheres and delivered to MDA-MB-231 and HeLa cancer cells. It was observed that
this formulation ameliorated CUR stability and solubility compared to native CUR and
exhibited enhanced cytotoxic activities against cancer cells [117]. It was reported that
CUR-loaded PLGA nanospheres exhibited strong intracellular uptake of the CNSs in the
cells. It was also shownthat CNSs exerted a strong effect on the cancer cells in comparison
with free CUR [167]. In the case of all the cancer cell lines, the range for IC50 of CUR-
loaded PLGA nanoparticles was in between 20 µM and 22.5 µM, whereas this range for
free CUR was in between 32 µM and 34 µM. Moreover, this was responsible for a nearly
35% decrease in the IC50 value with CUR-loaded nanoparticles. Microcapsules containing
mesoporous silica shells and solid lipid nanoparticles were prepared to increase CUR
bioavailability [168]. It is an auspicious drug delivery system and more appropriate for
poorly soluble drugs. By using the electrospray method, CUR-PLA-based microcapsules
were fabricated [169]. Indeed, the study demonstrated outstanding anti-oxygenation and
anti-microbial activities and indicated that the PLA-based electrospray technique combined
with spherical microcapsules haspotential medicinal applications, mainly in the case of
drug delivery.
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4.8. Nanogels

A nanogel is a nanoparticle (10–100 nm) containing a hydrogel produced via either
the chemical or physical cross-linking of polymers under controlled situations. Nanogels’
cross-linked structure provides a powerful base for drug release and storage. It has been
observed that it is a possible method to develop and release active forms of drugs to
cells to prevent drug immunogenicity, amelioratestability, and maintainthe activity [95].
A colloidal nanogel carrier system was synthesized and studied for the encapsulation of
CUR to increase its cytotoxicity and solubility. Indeed, this CUR-nanogel formulation had
the ability to destroy the tumor cells compared to CUR alone [170]. A CUR loaded hydrogel
nanoparticle was formulated by combining polyvinyl pyrrolidone and hydroxypropyl
methylcellulose, which was subsequently evaluated in mouse models for antimalarial
activity. It showed the crucial effect of CUR-loaded hydrogel nanoparticles compared to
unformulated CUR [171]. Compared to native CUR, CUR loaded into gold nanoparticle-
chitosan nanogels exerted enhanced cytotoxic effects in MCF7 and huh7 cell lines [123].
In addition, CUR was delivered as self-assembled capsules with casein nanogels and
carboxymethyl cellulose and fabricated with casein and folic acid via the layer-by-layer
method. The findings exerted apoptosis, cytotoxicity, and cellular uptake in melanoma
cells (MEL-39) [124]. In comparison with the pure CUR and carboxymethyl cellulose and
casein nanogels loaded with CUR, 2-folic acid/casein/carboxymethyl cellulose and casein
nanogels loaded with CUR had decreased IC50 value and exhibited superior cytotoxic
effects in MEL-39 cells due to folate-receptor facilitated endocytosis.

4.9. Nanodisks

Nanodisks are apolipoprotein-stabilized, self-assembled, and disk-shaped bilayers. In
a study, Ghosh et al. [127] first utilized the nanodisk to enhance the CUR’s solubility and
targeted release. Nanodisk formulations of CUR were found to be an effective approach
to treat mantle cell lymphoma and other cancers [128]. Interaction between glioblastoma
multiform cells and CUR nanodisk was mediated via apolipoprotein E primes to elevate
CUR uptake and to ameliorate biological activity [172]. As compared to the control CUR,
Mangalathillam et al. [173] reported that CUR loaded chitin nanogels exhibited four times
more steady-state transdermal flux of CUR. They also revealed through histopathology
studies that porcine skin samples that were treated with the prepared materials exhibited
loosening of the outermost layer of the epidermis, which further mediated penetration
along with no detected signs of inflammation. Collectively, these findings indicate that
CUR-loaded chitin nanogels can be particularly used in melanoma treatment through
efficient transdermal penetration [173].

4.10. Metallo-Complexes

CUR prepared with palladium(II) complexes exerted powerful antitumor action
against MCF-7,HeLa, and A549 tumor cells [174]. In this regard, further studies indicated
that these complexes triggered tumor cell apoptosis, disturbed mitochondrial membrane
potential, and arrested the cell cycle in the S phase via the ROS-dependent cascade. In
addition, Vellampatti et al. [175] reported that metallo-CUR-conjugated DNA complexes
exerted marked toxic effects toward prostate cancer cells compared to pristine DNA. Fur-
thermore, they evaluated the cellular uptake of these complexes and revealed that DNA
complexes containing Cu2+/Ni2+-CUR showed brighter fluorescence compared to the
complexes containing Zn2+-CUR.

5. Anticancer Activity of Curcumin against Various Types of Cancers

Indeed, CUR has exhibited its excellent activity in inhibiting cancer cell growth and
proliferation in different cancers such as gastrointestinal, head and neck, brain, pancreatic,
colorectal, breast, and prostate cancers. Several studies have already assessed its activity in
animal models and human cell cultures. Furthermore, multiple clinical studies have also
analyzed its safety and efficacy (as a monotherapy or in association with other anticancer
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agents) to treat several different types of cancer. In Table 2, we presentasummary of these
clinical studies.
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Table 2. Clinical studies of curcumin in the treatment or prevention of various types of cancers.

Cancer Type Study Type Study Duration Number of Participants Outcomes References

Breast cancer Phase I clinical trial 7 days 14
Reduced vascular endothelial growth factor levels,
decreased harmful effects, no cancer progression,

partial response in some individuals
[176]

Benign prostatic hypertrophy Pilot product evaluation study 24 weeks 61 Enhanced quality of life, decreased signs
and symptoms, [177]

Colorectal cancer

dose-escalation pilot study 29 days 15 Dose-dependently decreased the prostaglandin E2
(PGE2) levels [178]

Phase I dose-escalation trial 4 months 15
Lower concentrationsof curcumin (CUR) and its

metabolites in urine and plasma, dose-dependently
decreased the PGE2 levels

[179]

Phase I dose-escalation trial 7 days 12 Biologically active CUR levels in the colorectal tissue [180]

Phase I clinical trial 30 days 126 Reduced concentrationsof tumor necrosis factor-alpha
in serum, elevated p53 expression in colorectal tissue [181]

Phase II clinical trial 1 month 44 Decreased number of aberrant crypt foci [182]

Pilot study 14 days 26 Extended levels of biologically active CUR in colon
tissue, safe and well-tolerated [183]

Chronic myeloid leukemia Randomized controlled trial 6 weeks 50 Decreased levels of nitric oxide [184]

Intestinal Adenoma Randomized controlled trial 12 months 44 Very few adverse effects, no noticeable
clinical response [185]

Head and neck squamous cell
carcinoma Pilot study - 21 Decreased activity of IκB kinase β in the salivary cells [186]

Solid tumors Randomized controlled trial 8 weeks 80 Enhanced quality of life, decreased inflammatory
mediator levels [187]

Prostate cancer
Randomized controlled trial 6 months 85 Reduced prostate-specific antigen levels in

individuals with an initial PSA ≥ 10 µg/mL [188]

Randomized controlled trial 3 months 40 The considerable antioxidant effect, decreased levels
of PSA [189]

Pancreatic cancer

Phase II clinical trial 8 weeks 25 No toxicities, biological effect only in 2 individuals,
poor oral bioavailability [34]

Phase II clinical trial 4 weeks 17 Increased incidence of side effects [190]
Phase I/II clinical trial 14 days 21 Safe and well-tolerated [191]

Phase I clinical trial 9 months 16
Enhanced quality of life, highly bioavailable, safe, no
marked alterations in cytokine levels or nuclear factor

kappa B activity
[192]
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5.1. Gastrointestinal Cancers
5.1.1. Oral Cavity and Salivary Gland Cancers

Even though there are very limited studies regarding the activities of CUR in oral
cavity cancers, CUR has exhibited promising activities in preventing oral carcinogenesis.
CUR alone [193,194] or when taken with piperine [195] markedly decreased oral carcinoma
formation in the 7, 12-dimethylbenz[a] anthracene hamster buccal pouch model of carcino-
genesis, perhaps because of the CUR’s antioxidant and anti-lipid peroxidative activities
along with its activity on controlling carcinogen detoxification. It has been observed that
CUR might facilitate anticancer effects via elevating the systemic and local anti-oxidant
status, therefore averting DNA damage and lipid peroxidation [196]. It has also been
indicated that CUR may play a role as an oral cavity chemopreventive agent because of its
capacity to suppress activation of carcinogen via enhancing the expressions and actions of
cytochrome P-450 (CYP) 1A1 and/or CYP1B1 (Figure 3) [197]. CUR treatment suppressed
the in vitro cell growth via influencing the translation machinery and suppressing the
cap-dependent translation in leukoplakia cells (MSK-Leuk1s), instead of mortalized oral
mucosa epithelial cells (NOM9-CT) [198]. CUR decreased heat shock protein 70 (HSP70)
expression in oral epithelial GNM cells. Increased concentrations of HSP70 protein were
found to be linked with the progression of tumors [199]. In a study, Chang et al. [200]
revealed that CUR activates p38 in oral keratinocytes, which can eventually activate the
transactivator of CCAAT/enhancer-binding protein alpha to trigger insulin-like growth fac-
tor binding protein-5 (IGFBP-5). Upregulation of IGFBP-5 is linked tothe inhibition of oral
cancer cell tumorigenesis in xenografts in mouse models. CUR showed anti-motility action,
which was facilitated through the inhibition of MAPK/ERK and NF-κB signaling and thus
downregulation of proteolytic enzymes such as matrix metalloproteinases (MMP)-2/9 and
urokinase-type plasminogen activator (uPA) in the invasive oral squamous carcinoma cell
line YD-10B [201]. In addition, CUR-retracted smokeless tobacco mediated expression
of COX-2 and activation of NF-κB in oral cancer and premalignant cells in vitro [202].
CUR stimulated apoptosis via reactive oxygen species (ROS) generation [203–206], which
indicatesthat CUR can trigger cell death in these cancer cells.

5.1.2. Esophageal Cancer

Squamous cell carcinoma and adenocarcinoma are the two major types of esophageal
cancer. Still, the overall survival rate of esophageal cancer patients remains poor with
existing therapeutic agents. Therefore, there is a necessity for innovative and effective
therapeutic approaches for esophageal cancer, however, only a small number of studies
have evaluated whether CUR can be a potential candidate. CUR suppressed NF-κB ac-
tion and stimulated apoptosis in OE33 and Flo-1 adenocarcinoma cell lines. Moreover,
CUR increased cisplatin and 5-fluorouracil-induced chemosensitivity [208]. In a dose-
dependent fashion, CUR stimulated cell death in two adenocarcinoma cell lines including
OE19 and OE33, along with two squamous cell carcinoma cell lines including KYSE450
and OE21, perhaps via suppressing the ubiquitin-proteasome system [209]. CUR partly
reversed the esophageal squamous cell carcinoma growth-associated mitogenic activity of
prostaglandin E2 (PGE2) in the squamous cell carcinoma cell line HKESC-1 (Figure 3) [210].
Along with its effective chemotherapeutic activity, CUR may possess chemopreventive
activities in esophageal cancer. CUR suppressed the multiplicity and occurrence of pre-
neoplastic lesions when provided during the initiation phase and post-initiation phase in
N-nitrosomethylbenzylamine-mediated esophageal carcinogenesis in rat models [211].
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5.1.3. Stomach Cancer

Infection of gastric epithelial cells caused by Helicobacter pylori is a crucial mechanism
in the case of gastric cancer development. Indeed, one of the suggested molecular processes
of H. pylori-mediated carcinogenesis is the abnormal expression of activation-mediated
cytidinedeaminase (AID), which is a mechanism that includes activation of NF-κB via
H. pylori [212]. CUR was found to downregulate H. pylori-mediated AID expression by
NF-κB pathway suppression [213]. Furthermore, CUR showed an in vitro and in vivo an-
timicrobial effect against H. pylori and destroyed H. pylori [214,215]. Therefore, CUR can be
regarded as an effective chemopreventive agent against H. pylori-mediated gastric carcino-
genesis [213–216]. A different mechanism that has been associated with chemoresistance
and tumorigenesis includes Rho, NF-κB, and Rho effectors rhotekin (RTKN) (Figure 3) [217].
CUR blocked the RTKN-induced anti-apoptotic activity in AGS cells [217], which is a cell
line that was formerly utilized to exhibit that CUR has the capacity to suppress the growth
of gastric carcinoma cells [218]. CUR suppressed proliferation and invasion via down-
regulating the action of p21-activated kinase 1 (PAK1) and expression of cyclin D1 in
cultured gastric cancer cells (MGC803, MKN1, SGC7901, and BGC823 [219]. Furthermore,
in KATO-III gastric cancer cells, decreased levels of cyclin D and E were observed fol-
lowing stimulation of apoptosis via CUR [21]. In the resistant human gastric carcinoma
SGC7901/VCR cell line, CUR also has the capacity to reverse the multidrug resistance,
which may be linked with a decreased activity and expression of P-glycoprotein (P-gp) and
the induction of activation of caspase-3 [220], which further indicatesthat CUR may possess
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chemotherapeutic activities. In mouse models, chemopreventive activities of CUR have
been confirmed in benzo[a]pyrene-mediated for stomach cancer [221] and in N-methyl-N’-
nitro-N-nitrosoguanidine-mediated glandular stomach carcinogenesis [222–227]. Findings
from phase I clinical studies have also indicated biological activities of CUR in cancer
chemoprevention [228].

5.1.4. Intestinal Cancer

Anti-cancer activity of CUR has been best described in intestinal cancers by utilizing
in vivo animal models and cultured tumor cells. CUR has been found to be better tolerated
and its pharmacologically active levels can be attained in colorectal tissues in individuals
following its oral administration. However, more robust studies are required regarding
the anti-cancer effects of CUR in patients [229–232]. Chemopreventive activities of CUR
have been confirmed in tumor xenografts and in transgenic mice. CUR decreased the
suppressed tumor development [224,233–237] or number of abnormal crypt foci [237,238] in
the Azoxymethane [224,234–237,239] and the 1,2-dimethylhydrazine-stimulated [233,238]
rat colon cancer model. In addition, CUR treatment reduced tumor growth in HCT-116
colon tumor-bearing mouse models [240]. Various CUR analogs were found to be more
potent compared to CUR in some tumor models; for example, GO-Y030 showed greater
activity compared to CUR in stimulating apoptosis in cultured human colorectal cancer
cells [241] and elevated the lifespan in Apc(580D+) mouse models [241,242]. EF24 markedly
inhibited the tumor growth of HCT-116 colon cancer xenografts [57].

Along with chemotherapy, CUR might increase the efficacy of current chemothera-
peutics, which might be a better approach in treating gastrointestinal cancers [243]. Com-
bination therapy of dasatinib and CUR was found to be extremely effective in triggering
regression of intestinal adenomas in APC (Min/+) mouse models [244]. In comparison
with resveratrol alone, a combination of resveratrol and CUR effectively suppressed the
growth of HCT-116 cells both in vivo and in vitro in SCID xenografts [245]. CUR sensi-
tized colorectal cancer to the anti-metastatic and anti-tumor activities of capecitabine via
inhibiting the NF-κB signaling pathway in orthotopic colorectal cancer cell xenografts [246].
Along with oxaliplatin, liposomal CUR markedly suppressed the growth of Colo205 and
LoVo xenografts and showed anti-angiogenic activities [134]. CUR also enhanced the
pro-apoptotic activities of oxaliplatin [247,248], 5-fluorouracil [247,249], and sulindacsul-
fone [250] in cultured colon cancer cells. Numerous molecular targets of CUR have already
been detected in colon cancer cell lines, along with its well-defined activity in inhibiting the
COX-2 and NF-κB signaling pathway as well as other recognized processes of stimulating
apoptosis (Figure 3) [251–255]. These involve suppression of signaling pathways includ-
ing Ca2+/calmodulin [256], c-jun N-terminal kinase (JNK) [257], Akt/mTOR [258], IGF-
1R [247,259], Wnt/β-catenin [260–262], and EGFR [232,244,248,249]. CUR might inhibit the
expression of factors containing procarcinogenic activities including neurotensin-mediated
expression of IL-8 [263]. Moreover, both in vitro and in vivo studies have revealed that CUR
inhibited the proteasome effect and stimulate apoptosis in human colon cancer cells [240].

Radiotherapy is a crucial part of the preoperative treatment for rectal cancers. CUR
has the capacity to be an effective radiosensitizing agent with increased anti-angiogenic
activities in radiotherapy for colon cancer [253]. In multiple colon cancer cell lines, CUR
blocked the transient inducible NF-κB signaling pathway that provided a pro-survival
response to radiation [254]. Moreover, CUR sensitized HCT-116 xenografts to gamma-
radiation [252], which indicatesthat CUR administration might be utilized to decrease
the side-effects that are commonly observed with radiation therapy. Chemopreventive
activity of CUR in familial adenomatous polyposis (FAP) has been found to extend the
opportunity for cancer prevention and intervention. The combination of quercetin and
CUR reduced the number and size of rectal and ileal adenomas in FAP patients [264].
Dietary CUR decreased COX-2 expression and exhibited antioxidant properties that have
been linked with hindrance in adenoma development in the Apc (Min/+) mouse model
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of FAP [265,266]. Although these initial findings are promising, further investigation is
required regarding the chemopreventive activities of CUR in FAP.

5.1.5. Hepatic Cancer

Only fewer individuals with hepatocellular carcinoma are diagnosed at early stages
and therapeutic options are highly inadequate. At present, surgery is considered as the
most effective therapeutic strategy. Nonetheless, there is poor long-term survival, and
recurrence rates are high. Usage of chemotherapy and radiation is limited and there is a
strong need todiscover novel chemotherapeutic and chemopreventive agents. Multiple
experiments have evaluated the in vitro anti-carcinogenic action of CUR in hepatic cancer
cells. GL63 (a CUR analogue) suppressed the growth more effectively compared to CUR
in HepG2 cells. Furthermore, this finding was linked with the activation of apoptosis
and ER stress, an effect that was not seen with CUR [267]. Interestingly, CUR stimulated
apoptosis and G2/M arrest in multiple hepatoma cell lines including QGY-7703, SK-
Hep-1, Hep3B, and Huh7, however, HepG2 cells were found to be CUR-insensitive [268].
Nonetheless, various other analyses stated the activities of CUR in HepG2 cells such as
stimulation of apoptosis [269–271] via mitochondrial DNA damage and mitochondrial
hyperpolarization [269,270] or via a p53-dependent pathway [271], and suppression of
hypoxia stimulated angiogenesis by downregulation of hypoxia-inducible factor HIF-
1 [272]. Knockdown of the extracellular matrix metalloproteinase inducer EMMPRIN
(CD147) showed sensitivity toward CUR [273] and CUR blocked the c-Met promoter
transactivation via activated protein 1 (AP-1) in Hepa1-6 cells [274]. CUR showed a marked
anti-invasion effect thatwas linked with the suppression of metalloproteinase MMP-9 in
the extremely invasive SK-Hep-1 hepatocellular carcinoma cell [275]. CUR alone or in
combination with doxorubicin or cisplatin showed apoptotic and cell growth inhibitory
activities, partly because of the alterations in NF-κB concentrations in hepatic cancer
HA22T/VGH cells [276].

CUR exerted anticancer activities in multiple in vivo hepatocellular carcinoma mod-
els. CUR markedly suppressed the formation and growth of liver adenoma in mouse
models receiving N-bis (2-hydroxypropyl) nitrosamine [277]. In addition, CUR decreased
tumor multiplicity and occurrence in mice with diethyl nitrosamine-mediated hepato-
carcinogenesis [278]. Even at the highest doses, tetrahydro curcumin did not exert any
cytotoxic effect in HepG2 cells, however, it exerted anti-angiogenic activities in HepG2
xenografts [279–281]. In an orthotopic implantation model of hepatocellular carcinoma
CBO140C12 cells, CUR inhibited intrahepatic metastasis, but did not influence the growth
of the implanted tumor [282]. In Wistar rats, CUR exerted beneficial activities against ox-
idative stress during chemically triggered hepatocarcinogenesis in N-nitroso-diethylamine-
introduced and phenobarbital-mediated hepatocarcinogenesis [283–285], which indicate
that CUR might play a role as an effective therapeutic agent in liver cancer.

5.1.6. Pancreatic Cancer

Pancreatic cancer is frequently detected in an advanced stage and is characterized by
increased invasiveness, rapid disease progression, and resistance to chemotherapy. In pan-
creatic cancer, CUR may have antitumor activity alone [286,287] or in association with other
therapeutic agents including celecoxib [288] or gemcitabine [289–292]. When a polymeric
nanoparticle-encapsulated CUR was administered systematically, it blocked metastasis
and tumor growth in subcutaneous and orthotopic Pa03C xenograft models of pancreatic
cancer [286], while liposomal CUR reduced tumor growth in MiaPaCa-2 subcutaneous
xenografts [293] and in cultured pancreatic cancer cells [294]. Interestingly, nanoparticle
encapsulation of CUR into a MePEG/poly-epsilon caprolactone (PCL) diblockcopolymeric
micelle increased the cytotoxicity and uptake in the pancreatic cancer cell lines PANC-1
and MiaPaCa-2 [295] and the polyethylene glycosylated (PEG) CURconjugate was more
effective in inducing apoptosis and cell cycle arrest compared to free CUR [296]. In phase
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II studies, CUR was found to be better-tolerated and exerted a biological effect in some
advanced pancreatic cancer patients [34].

Suppression of the NF-κB signaling pathway via CUR has been reported in the case
of pancreatic cancer [297–299]. NF-κB suppression was reliant on decreasing various
transcription factors including Sp1, Sp3, and Sp4, and was associated with ROS stimula-
tion [297,300]. Various other targets of CUR involve the transcription factor Wilms’ tumor
gene 1 (WT1) [301], heme oxygenase-1 (HO-1), ATM/Chk1 [302], survivin/BIRC5 [303],
STAT3, IL-8 receptors CXCR1 and CXCR2 [304], Notch-1 [305], EGFR [306], miR-21and
miR-22, micro RNAs miR-200, PGE2, COX-2, and Akt (Figure 3). The activity of STAT3 was
also suppressed via GO-Y030 (a potent analog of CUR) [307] in pancreatic cancer cell lines.
Indeed, other CUR analogs exhibited enhanced potency compared to CUR in the case of
pancreatic cancer. In comparison with CUR alone, FLLL11 and FLLL12 markedly induced
apoptosis and suppressed cell viability [308]. CDF (a fluorocurcumin analog) exhibited
substantially higher bioavailability in pancreatic tissue compared to CURalone [309].

5.2. Head and Neck Cancer

Globally, head and neck squamous cell carcinoma (HNSCC) is considered as the
sixth most common form of cancer, and every year, over 30,000 cases of HNSCC are
detected. In general, HNSCC arises in the pharynx, larynx, paranasal cavities, and oral
cavity. It has been confirmed by in vitro studies in various cell lines of head and neck
cancer that CUR has the capacity to suppress cell growth because of its activities on several
cellular mechanisms associated with cell proliferation (especially STAT3 and NF-κB), which
have been detected to be overexpressed in various head and neck cancers. Furthermore,
CUR can also cause NF-κB downregulation and suppress the interleukin-6 (IL-6)-induced
STAT3 phosphorylation, which can eventually result in the suppression of cancer cell
proliferation [186].

In a study, Kim et al. [186] estimated the activity of CUR on suppressing the proin-
flammatory cytokines and IκB kinase β (IκKβ) activity in HNSCC patients. These patients
were treated with chewable CUR tablets (2 mg), after that, saliva samples of the patients
were collected before and after administering the chewable CUR tablets. In these saliva
samples, IκKβ activity and levels of salivary cytokines such as IL-6 and IL-8 were measured.
Furthermore, CUR reduced the activity of IκKβ in the salivary cells of HNSCC individuals.
There was a small decrease in the expression of IL-8 in eight out of 21 post-CUR samples.
A significant decrease was also observed in the expression of various other cytokines, for
instance, IL-2, IL-12p70, IFN-γ, and IL-10 clustered together, and also tumor necrosis factor-
alpha (TNF-α) and granulocyte-macrophage colony-stimulating factor clustered together.
Since these findings suggest the suppressive activity of CUR on IκKβ action in the salivary
cells of individuals with HNSCC, it has been suggested that IκKβ can be considered as a
biomarker for identifying the activity of CUR in head and neck cancer [186].

5.3. Glioblastoma and Brain Cancer

In humans, glioblastoma (GBM) is considered the most common type of malignant
brain cancer and responsible for around 15% of all CNS tumors [310,311]. The use of radia-
tion therapy and surgical intervention to treat GBM and brain tumors is restricted because
of the infiltration of cancer cells into the healthy brain, which can eventually exert harmful
effects following treatment [312]. Thus, there is a growing interest in alternative therapies
by means of naturally occurring compounds including CUR due to their fewer side effects
compared to conventional therapies. CUR can exert effects in various molecular targets,
thus fighting against the brain tumors that might need multiple cellular mechanisms, for
instance, metastasis, invasion, angiogenesis, autophagy, and apoptosis. Blood–brain barrier
(BBB) penetration is regarded as the rate-limiting step for numerous anti-cancer drugs,
however, CUR showed the capacity to penetrate BBB at increased concentrations [313]. It
has been revealed by an in vivo study (involving human glioma U-87 cells xenografted
into athymic mouse models) that CUR has the capacity to inhibitglioma angiogenesis via
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downregulating endothelial cell markers (i.e., CD105 and CD31 mRNA) and suppressing
MMP-9 [313]. In U-251 malignant glioblastoma cells, CUR mediated G2/M cell cycle arrest
was explained by the elevation of the protein kinase 1 (DAPK1) level, which suggests
that inhibiting DAPK1 via CUR stimulates cell arrest and also causes NF-κB and STAT3
suppression and caspase-3 activation [314].

5.4. Breast Cancer

Breast cancer is a major cause of death in women [176]. It has been revealed by the
meta-analysis of 21 retrospective studies that despite endocrine therapy, chemotherapy,
radiation therapy, and lumpectomy, the occurrence rate of breast cancer is still high [315].
Thus, there is a need for more effective therapeutic approaches. In MCF-7 breast cancer
cells and MCF-10A human mammary epithelial cells [176], an excellent reduction in telom-
erase activity was noticed due to CUR treatment in a concentration-dependent manner,
which was found to be associated with hTERT downregulation via CUR instead of the
c-Myc mRNA pathway [176]. In BT-483 and MDA-MB-231 breast cancer cell lines, the
activity of CUR on NF-κB, matrix metalloproteinases, and cell-cycle regulatory proteins
was also assessed. CUR has been reported to downregulate NF-κB, which can further
result in antiproliferative activity. Nonetheless, a reduction in CDK4 BT-483 and cyclic D1
in MDA-MB-231 cells was also noticed with CUR treatment. Treatment with a combination
of CUR and arabinogalactan induced apoptosis via disturbing the mitochondrial mem-
brane, elevating the levels of ROS, and reducing glutathione in the MDA-MB-231 cell line.
Furthermore, CUR also suppressed breast tumors through p53gene overexpression and
via decreasing the levels of antigen ki-67. In a different study, CURalso suppressed the
levels of inflammatory cytokines CXCL1/2 in MDA-MB-231 cells. Moreover, suppression
of CXCL1/2 via CUR also suppressed the expression of multiple metastasis-promoting
genes including chemotactic receptor CXCR4. It was also reported that by suppressing
various types of steroid receptors, dimethyl CUR (ASC-J9) is effective atfighting against
estrogen-dependent breast cancer [176].

In a clinical study, in 14 individuals with metastatic or locoregionally recurrent ad-
vanced breast cancer, Bayet-Robert et al. [176] assessed the tolerability and feasibility of
the combination of docetaxel and CUR. Intravenous infusion of docetaxel (100 mg/m2)
was administered to participants every three weeks for six chemotherapy cycles and oral
administration of CUR (starting dose was 500 mg/day and the dose was elevated until a
dose-limiting toxicity was observed) was continued for seven consecutive days in each cycle
(from five days before to two days following docetaxel administration). In the participants,
the primary outcome was the maximum tolerated dose of CUR when taken in combination
with a standard docetaxel dose. On the other hand, secondary endpoints were a clinical
response, safety, and toxicity to the combination therapy, along with levels of a marker for
mCEA tumor and VEGF as a positive endogenous modulator of angiogenesis [176].

Indeed, 8 g/day as in higher doses was the maximum tolerated dose of CUR. Further-
more, various dose-limiting toxicities including severe diarrhea, anemia, and neutropenia
were seen, which resulted in the termination of the clinical trial in two participants. Other
toxic effects including fatigue, conjunctivitis, dermal changes, nail changes, hand-foot
syndrome, and oral cavity mucositis were either not continuous or were easilytreated,
and so therefore did not influence the trialcontinuation. Due to the noncompliance of
multiple individuals with doses over 6 g/day, this dose was suggested as the maximum
tolerated dose to be regardedfor phase II clinical trials. To some extent, the improvement
was observed in most of the participants in cases of clinical and biological responses. Fur-
thermore, in that study, three participants showed at least six weeks following the last cycle
of treatment. However, no advancementin the disease was seen in any of the participants.
It was observed that the combination of CUR/docetaxel markedly reduced the VEGF levels
following three cycles of treatment [176].
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5.5. Colorectal Cancer

Colorectal cancer is a very common form of malignant cancer [244]. In addition to
chemotherapy, tumor tissue was surgically removed from the individuals with colorectal
carcinoma, however, over half of the individuals suffered from relapses [316]. In malignant
colorectal cells, CUR treatment reduced the levels of M1G without altering the levels of
COX-2 protein [180]. Furthermore, administration of CUR downregulated the miR-21 gene
(which is found to be overexpressed in colorectal cancer cells) via suppressing the binding
of activator protein 1 (AP-1) with miR-21 promoter [317]. In HCT116 colorectal cancer
cells, CUR treatment led to cell cycle arrest in the G2/M phase via miR-21 gene regulation
and suppressed the growth of tumor tissues [317]. It has been confirmed that enhanced
response to radiation therapy can be obtained by combining CUR in the treatment because
CUR has the capacity to target NF-κB [252]. In a different study, the inhibitory activity of
CUR was increased against colon cancer cells by combining CURwith ERRP (an inhibitor
of pan-ERBB) [318].

Sharma et al. [179] in a dose-escalation study evaluated the pharmacological activity
of CUR in 15 individuals with advanced adenocarcinoma of the colon or rectum refractory
to standard chemotherapies. For up to four months, participants of the study received
various doses of oral CUR ranging from 0.45 to 3.6 g/day. After that, levels of CUR and its
metabolites were also assessed in plasma, feces, and urine. Furthermore, oxidative DNA
adduct (M1G) levels, the activity of glutathione S-transferase (GST), and the extent of ex
vivo stimulation of PGE2 in patient blood leukocytes were evaluated as biomarkers of CUR
function. It has also been found that intact CUR and its glucuronide and sulfate conjugates
were identified in plasma at a concentration of 10 nmol/L and also in urine [179]. Indeed,
no dose-limiting toxic effects were identified. Interestingly, neither any activity on basal
PGE2 levels in leukocytes was seen following CUR treatment at any of the doses, nor was
any alterations observed in the LPS-mediated PGE2 generation at doses in between 0.45
and 1.8 g/day. CUR treatment at the dose of 3.6 g/day resulted in a 62% and 57% decrease
in the inducible levels of PGE2 in patient blood samples one hour following treatment on
days 1 and 29, successively, in comparison with the baseline levels. M1G levels and total
GST activity in leukocytes exhibited significant differences between participants, however,
no treatment-associated activities were noticed. According to these findings, researchers
indicated an oral dose of CUR 3.6 g/day for a phase II trial in cancers in sites outside the
gastrointestinal tract thatneed systemic actions [179].

In another study, Garcea et al. [180] measured the pharmacological activity of CUR
in the colorectum by COX-2 and M1G levels in 12 individuals with colorectal carcinoma
after oral treatment of CUR at doses of 450 mg, 1800 mg, or 3600 mg per day. Biopsy
and blood samples of the malignant and normal colorectal tissue were obtained from the
individuals at designated time intervals and examined for the concentrations of CUR, COX-
2, M1G, and CUR metabolites (CUR glucuronide and CUR sulfate). Increased CUR levels
were found in normal compared to malignant colorectal tissues of individuals receiving
CUR at a dose of 3.6 g per day, along with a trace amount of CURin the peripheral blood
circulation. In addition to this, metabolites of CUR were also identified in the colorectum
of these individuals [180]. Baseline levels of M1G were 2.5-times higher in malignant
tissue in comparison with the normal tissue in the same group of individuals, which were
markedly decreased following CUR administration. However, COX-2 levels in malignant
colorectal tissue were not decreased via CUR. Collectively, these results indicate that CUR
administration at a dose of 3.6 g/day can achieve pharmacologically active levels in the
colorectum with minimum distribution outside the digestive tract [180].

Various researchers have studied the mode of action of the anticancer effect of CUR in
colorectal cancer. In a dose-escalation pilot study, Plummer et al. [178] evaluated the activi-
ties of C. longa extract (comprising desmethoxy curcumin and CUR) on the suppression of
the COX-2 effect and therefore the PGE2 levels in 15 individuals with advanced colorectal
cancer. Participants of the study were divided into five groups receiving once-daily oral
curcuminoid doses between 40 and 200 mg for a minimum of 29 days. A comparisonofthe
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PGE2 concentrations in blood samples obtained from participants exhibited a noticeable
difference between participants in different groups and reduced PGE2 concentrations with
an elevated CUR dose, which evidently suggests dose-dependent CUR-mediated COX-2 in-
hibition [178]. In a clinical trial, this was further analyzed by Carroll et al. [182] to evaluate
the activities of CUR when administered orally in order to prevent colorectal cancer. In that
study, 44 smokers with eight or more aberrant crypt foci (ACF) on diagnosing colonoscopy
were involved and were divided into two groups receiving oral CUR at a dose of either 2 g
or 4 g/day for 30 days. 5-hydroxyeicosatetraenoic acid (5-HETE) and PGE2 levels within
ACF were evaluated, along with the decrease in the number and/or proliferation of ACF
(estimated via rectal endoscopy and Ki-67 immunohistochemistry assay, successively). The
decrease inACF was utilized as an estimation of the cancer-preventive efficacy of CUR,
supposing that decreasing the levels of 5-HETE and PGE2 in the colorectal mucosa would
lead to decreased ACF formation and epithelial crypt proliferation [182].

Any decreased levels of 5-HETE or PGE2 within normal mucosa or ACF were seen
with any doses of CUR and there was alsoa decreased Ki-67 level in normal mucosa.
Furthermore, there were no alterations in the number of ACF in the group treated with
2 g of CUR. Nevertheless, a marked decrease in the number of ACF was noticed in the
group receiving 4 g of CUR, which was found to be linked with a marked rise in the plasma
levels of CUR conjugates, which further suggeststhe action of systematically delivered
CURconjugates on the decrease inACF number instead of the locally delivered CUR [182].
In a study, in individuals with colorectal cancer, He et al. [181] studied the activities of
CUR on p53 expression in the colorectum tissue and the serum TNF-α levels. In total,
126 colorectal cancer patients were randomly divided into two groups receiving either the
placebo or CUR (at an oral dose of 360 mg, 3 times/day) during the period ahead of surgery.
Blood and colorectal biopsy samples were obtained from the participants before and after
treatment and were studied for serum TNF-α levels and p53 expression, respectively.
A marked decrease in the serum TNF-α level was detected in the participants receiving
CUR, while no such activity was found in the placebo group.A number of apoptotic cells
were also elevated following CUR treatment in comparison with the baseline values, while
no noticeable alteration was detected in the placebo group. In addition, CUR treatment
elevated the expression of Bax and p53 and suppressed theBcl-2 expression in the colorectal
tissue [181].

In a clinical trial, Cruz-Correa et al. [185] evaluated the safety and efficacy of CUR
in familial adenomatous polyposis. In that clinical study, 44 participants with familial
adenomatous polyposis with a minimum of five intestinal adenomatous polyps who had
not gone through colectomy were incorporated into that study and were randomly divided
into two groups receiving either the placebo or pure CUR (oral dose of 3 g/day) for
12 months. In addition, main endpoint measures including the size and number of lower
gastrointestinal tract polyps were evaluated every four months for one year. No marked
difference was observed in the mean size or mean number of polyps between the placebo
group and CUR group at the end of the study. Furthermore, adverse events were very
uncommon and not considerably different from the placebo group. In individuals with
familial adenomatous polyposis, these findings suggest the low efficacy but high safety of
oral CUR at the administered dose [185].

5.6. Prostate Cancer

According to a recent report of the American Cancer Society, around 2.9 million males
have been diagnosed with prostate cancer in the United States [319], which makes this
cancer the second main cause of cancer-related death in males [320]. CUR has exhibited
a powerful capacity to stimulate apoptosis and suppress proliferation in prostate cancer
both in vitro and in vivo [321] by affecting various cellular mediators including NF-κB,
EGFR, and MAPK [322,323]. In a study, CUR was found to have the capacity to cause
protein kinase D1 (PKD1) activation, which can lead to the weakening of the oncogenic
signaling via MAPK and β-catenin [324] and subsequent suppression of prostate cancer
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development [324]. Furthermore, there was a significant PKD1 downregulation after
progression from androgen-dependent to androgen-independent prostate cancer [324],
which influencedthe motility and invasion of prostate cancer through interaction with
E-cadherin [317]. Thus, it has been regarded as a new therapeutic target for cancer in
general and particularly for prostate cancer [325]. Along with CUR, some of the CUR
derivatives have also exhibited anti-cancer effects against prostate cancer. Interestingly,
metallo-CUR conjugated DNA complexes exerted marked toxicity to prostate cancer cells
(DU145, LNCaP, TRAMP-C1, 22Rv1, and PC3) [175]. In androgen-dependent prostate
cancer, dimethyl CUR(ASC-J9) exhibited good activity in enhancing androgen receptor
degradation [326,327].

In a clinical study, Hejazi et al. [189] evaluated the activity of CUR on the oxidative
status of individuals with prostate cancer during radiotherapy. In that clinical study,
40 participants were incorporated in the trial and were randomly assigned to receive either
placebo or oral curcuminoids (CUR, bisdesmethoxycurcumin, and desmethoxycurcumin,
3 g/day) before and during external-beam radiation therapy. Three months after radiother-
apy, the outcome measures of oxidative status were the plasma total antioxidant capacity
(TAC), glutathione peroxidase activity, superoxide dismutase (SOD) activity, and catalase
activity. Furthermore, PSA level was utilized as an estimation of successful treatment.
A marked decrease in SOD activity and a significant rise in TAC level were observed
following radiotherapy in comparison with the baseline (pretreatment) values, which
indicatesthe superior antioxidant activity of CUR, while no considerable alterations were
seen in glutathione peroxidase activity and catalase activity. PSA levels were markedly
decreased compared to baseline levels in both groups, which suggests successful treat-
ment; however, there was no substantial difference between the two groups, which further
suggeststhat CUR did not influence the efficacy of the radiotherapy [189].

In a clinical trial, Ide et al. [188] analyzed the activity of a combination of soy
isoflavones and CUR on the PSA expression with increased PSA levels (but neither prostate
cancer nor prostatic intraepithelial neoplasia). Altogether, 85 participants were incor-
porated into this study and were randomly assigned to receive either a placebo or a
supplement containing a combination of CUR and isoflavones. Systematic prostate biopsy
was done on the individuals prior to and six months following treatment and the PSA
levels were also measured. Treatment with CUR/isoflavones markedly reduced the PSA
levels in the individuals with an initial PSA ≥ 10 µg/mL in comparison with the placebo
group, which they attributed to the synergistic anti-androgen activity of isoflavones and
CUR [188]. Nonetheless, as there was no comparison between the effects of treatment with
isoflavones alone and CUR alone compared to combination therapy on the PSA levels.
Thus, more studies are required to confirm that combination therapy is more beneficial
than monotherapy [188].

5.7. Leukemia

Leukemia is a blood cancer that mainly affects blood and bone marrow. It has been
revealed that leukemia is accountable for 8% of all cancer cases (including all age groups)
and involves huge costs in cases of diagnosis and treatment [328]. There are four types of
leukemia including acute lymphoblastic leukemia (ALL), acute myeloid leukemia(AML),
chronic lymphocytic leukemia (CLL), and chronic myeloid leukemia (CML). Patients
with leukemia exhibit various common signs and symptoms including susceptibility
toward various infections, weakness, fatigue, leukopenia, and anemia [329]. Furthermore,
leukemia is a very common childhood cancer that accounts for around 30% of all cancers
among children under the age of 15 [330]. Although marked enhancements have been
achieved in leukemia therapy, the effectiveness of the available chemotherapeutic agents
is still low. Leukemia involves a poor prognosis with recurrent relapses and increased
mortality. It has been reported by numerous studies that the use of CUR can be beneficial
in leukemia treatment.



Biomolecules 2021, 11, 392 24 of 40

5.7.1. Anticancer Activities of Curcumin against Various Types of Leukemia
Acute Lymphoblastic Leukemia

Poly (ADP-ribose) polymerase-1 (PARP1) (a nuclear protein) has a significant con-
tribution in repairing DNA damage. In addition, PARP1 plays a significant role in many
pathological mechanisms including cell death, angiogenesis, cell survival, and inflamma-
tion. PARP1 overexpression has been observed in multiple primary human cancer cell
lines [331,332]. In a study, Mishra et al. [333] revealed that CUR suppresses the prolif-
eration of RS4;11 and REH cells through cleavage of PARP1 signaling pathways. It was
also reported that CUR modified methylation of DNA AML cells via downregulating
DNA methyltransferase 1 (DNMT1) expression, which further resulted in p15 upregulation
and apoptosis of ALL cells [334]. In AML patients, the Philadelphia chromosome that
encodes a fusion of breakpoint cluster region-Abelson (BCR-ABL)is a commonly observed
genetic abnormality, predominantly among adults. It has been observed that this fusion
contains a poor prognosis of ALL and interacts with several signaling mechanisms (such
as RAF/MEK/ERK, STAT5, Akt/mTOR (mammalian target of rapamycin)), which even-
tually influences apoptosis of lymphoid cells. Imatinib (an inhibitor of tyrosine kinase)
is typically prescribed for these patients. In these patients, Ph-positive ALL cells show
poor response toward imatinib. Moreover, resistance toward imatinib is seen in these
individuals [335,336]. Treatment with imatinib increases the effect of the Akt/mTOR sig-
naling pathway, which seems to affect the efficacy of this agent. Thus, suppression of the
Akt/mTOR signaling pathway might ameliorate the response toward imatinib. Indeed,
CUR exhibits antitumor activities and suppresses multiple signaling cascades, particularly
mTOR. Both as a single therapy and in combination with imatinib, inhibitory effects of
CUR were studied on ALL cells both in vitro and in vivo. CUR also decreased the activa-
tion of ABL/STAT5 and Akt/mTOR. Furthermore, CUR decreased the Bax/Bcl-2 ratio and
downregulated BCR/ABL expression. CUR also exerted synergistic antitumor actions with
imatinib in the SUP-B15 cell line, however, it suppressed cell growth in samples obtained
from imatinib-resistant and recently diagnosed patients [337].

Acute Myeloid Leukemia

Chemoresistance is the major challenge in AML treatment. Moreover, CD34+ AML
cells exhibit poor prognosis and resistance toward impulsive apoptosis. A study by
Rao et al. (2011) studied CUR’s cytotoxic activities in DNR-insensitive CD34+ AML cell
lines. CUR also synergistically increased the cytotoxic effects of daunorubicin and sup-
pressed cell proliferation via arresting cell cycle in the G1/S stage. Interestingly, CUR
reduced the expression of Bcl-2 mRNA and protein and stimulated caspase-3 activation.
DNA methylation is mediated by DNMT1 and this enzyme catalyzes the transfer of the
methyl group to DNA. Abnormal methylation of DNA can result in the silencing of tumor
suppressor genes in numerous tumors and is associated with cancer pathogenesis. Thus, it
is essential to develop novel inhibitors of DNA methylation with less toxicity. In a different
study, Yu et al. [338] reported the in vitro and in vivo activities of CUR on the action of
DNMT in AML cells. Furthermore, CUR decreased the effect of DNMT via downregulating
p65 (2 positive DNMT1 regulators), NF-kB components, and Transcription Factor1 (Sp1),
which further resulted in p15INK4B reactivation. Treatment with CUR markedly decreased
AML tumor growth in mouse models [339].

Chronic Lymphocytic Leukemia

In the Western world, CLL is a very common (22–30%) form of hematological ma-
lignancy worldwide [340,341]. It has been reported that CLL-B cells interact with their
microenvironment. Moreover, the survival of B cells was ameliorated via interaction with
the bone marrow stromal cells. Increased lifespan of B cells caused an aberrant buildup of
these cells [342]. In a study by Ghosh et al. [343], inhibitory effects of CUR on cells were
obtained from CLL patients. They observed that CUR suppressed AKT, STAT3, and NF-κB
signaling cascades. Treatment with the combination of CUR and epigallocatechin-3 gallate
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(EGCG) reversed the stromal mediated protection. In addition, CUR stimulated apoptosis
through the cleavage of PARP, which further exerted an independent action on the caspase
cascade [343].

Chronic Myeloid Leukemia

Characteristics of CML include the BCR-ABL fusion gene, which has been found to
play a role in CML pathogenesis [344]. BCR-ABL contains three breakpoint cluster areas
including micro (µ-BCR), minor, and major (M-BCR). It has been reported that M-BCR is
the main breakpoint. Furthermore, it is responsible for encoding a 210 kDa protein and
generating a 190 kDa protein, while µ-BCR encodes for a 230 kDa protein [345]. It was
revealed that the P210 BCR-ABL protein plays a significant role in CML pathogenesis.
In the hematopoietic system, this protein stimulated the proliferation of progenitor cells
by initiating multiple cascades (such as the Ras/Raf/ MAPK pathway) and provided
protection to CML cells against apoptosis [346,347]. Thus, targeting this protein is a
promising therapeutic approach. Wu et al. [347] revealed the activities of CUR in K562
cells and estimated that CUR-mediated suppression of proliferation of K562 cells through
p210 BCR-ABL downregulation, which further resulted in suppression of the Ras signal
transduction cascade. In CML cells, Mukherjee et al. [348] reported that CUR improved
the efficacy of imatinib mesylate (IM). Various doses of IM (alone) or in combination with
CUR (30 µM) were used to treat K562 cells. It was indicated by the MTT assay that CUR
markedly elevated the toxicity of IM. It was also exhibited by western blot analysis that
when IM (alone) or acombination of IM and CUR was used, itdownregulated the expression
of p210 BCR-ABL, heat shock protein 90 (Hsp90), survivin, and NF-κB subunits p65 and
p50. Moreover, they reported that treatment with a combination of IM and CUR elevated
the effects of caspase-3, caspase-8, and caspase-9 [348]. In a different study, Zhang et al. [349]
showed that a combination of CUR and phosphorothioate antisense oligonucleotides led
to synergistic suppressive activities on K562 cell proliferation via downregulating Hsp90,
NF-κB, and P210 BCR-ABL.

6. Conclusions

Over the last few decades, CUR has been widely studied for its antioxidant, antian-
drogenic, anti-inflammatory, and anticancer effects. Indeed, CUR has exhibited significant
anticancer activities (both in vitro and in vivo) against various types of cancers including
gastrointestinal, head and neck, brain, pancreatic, breast, colorectal, and prostate cancers.
In various clinical studies involving human subjects, the safety and efficacy of CUR have
been proven in cancer individuals either alone or in combination with other anticancer
agents. CUR exerts its anticancer effect through various mechanisms including interfering
with different cellular pathways and inhibiting/inducing the generation of multiple cy-
tokines, enzymes or growth factors including IκKβ, TNF-α, STAT3, COX-2, PKD1, NFκB,
EGF, MAPK, and so on. Moreover, nanoformulations of CUR can be effective in improving
delivery, aqueous solubility, and efficacy compared to conventional delivery of CUR.
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AID: activation-induced cytidinedeaminase; ABL, Abelson; Akt, protein kinase B; ALL, acute lym-
phoblastic leukemia; AML, acute myeloid leukemia; AP-1, activated protein-1;ATM/Chk1, ataxia
telangiectasia mutated/checkpoint kinase 1; BBB, blood–brain barrier; Bcl-2, B-cell lymphoma 2; BCR,
breakpoint cluster region; BIRC5, Baculoviral IAP Repeat Containing 5; BLED, blue light-emitting
diode, CCAAT/enhancer-binding protein alpha; CAR, cisplatin-resistant cancer; CDs, cyclodex-
trins; CDK4, cyclin-dependent kinase 4; CLL, chronic lymphocytic leukemia; CML, chronic myeloid
leukemia; CNS, central nervous system; CNSs, CUR nanospheres; COX-2: cyclooxygenase-2; CUR,
curcumin; CXCR1, chemokine receptor 1; CXCR2: chemokine receptor 2; CYP1A1, cytochrome
P-450 A1; CYP1B1, cytochrome P-450 B1; DNMT1, DNA methyltransferase 1; DRs, death receptors;
ECM, extracellular matrix; EGFR: epidermal growth factor receptor; FAP, familial adenomatous
polyposis; FAK, focal adhesion kinase; GBM, glioblastoma; GST, glutathione S-transferase; HAS,
human serum albumin; HIF-1, hypoxia-inducible factor-1; HNSCC, head and neck squamous cell
carcinoma; HO-1, heme oxygenase 1; HSP70, heat shock protein 70; IGF-1R: insulin-like growth factor
1 receptor; IGFBP-5, insulin-like growth factor binding protein-5; IM, imatinib mesylate; IL-1/β/8/10,
interleukin 1/beta/8/10;IκKβ, IκB kinase β; JNK, C-jun N-terminalkinase; LPS, lipopolysaccharide;
MNPs, magnetic nanoparticles; MAPK/ERK, mitogen-activated protein kinase/extracellular receptor
kinase; miR 21/22/200, microRNA 21/22/200; MMP, matrix metalloproteinase; MNPs, magnetic
nanoparticles; mRNA, messenger RNA; mTOR, mammalian target of rapamycin; mTOR-HIF1α,
mammalian target of rapamycin-hypoxia-inducible factor 1α; NF-κB, nuclear factor kappa B;p38
MAPK, p38 mitogen-activated protein kinase; PAK1, p21-activated kinase 1; PARP1, Poly (ADP-
ribose) polymerase-1; PDT, photodynamic therapy; PEG, polyethylene glycol; PGE2, prostaglandin
E2; P-gp, P-glycoprotein; PKM2, pyruvate kinase M2;PLA, polylactic acid; PLGA, poly(lactic-co-
glycolic acid); PSA, prostate-specific antigen; pSTAT3, phosphorylated signal transducer and activator
of transcription 3;ROS, reactive oxygen species; RTKN, rhotekin; SOD, superoxide dismutase; Sp
1/3/4, specificity protein 1/3/4;STAT3, signal transducers and activators of transcription 3; TAC,
total antioxidant capacity; TNF, tumor necrosis factor; TNFα, tumor necrosis factor alpha; TTP, tumor
progression; uPA, urokinase-type plasminogen activator; VEGF, vascular endothelial growth factor;
Wnt, wingless-related integration site;WT-1, Wilms’ tumor gene 1.
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