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a b s t r a c t 

We obtain Lie point symmetries for the system of partial differential equations describing flow and heat 

transfer in a thin liquid film on an unsteady stretching sheet and use them to construct invariants. We 

derive similarity transformations using deduced invariants that reduce the independent variables of the 

considered flow model. Such reductions lead to systems of ordinary differential equations. We solve these 

systems of ordinary differential equations analytically by applying the Homotopy analysis method. 

© 2021 Elsevier Ltd. All rights reserved. 

1

l

s

i

o

a

u

t

v

s

t

fl

p

r  

fl

n

t

[

t

e

n

n

n

t

s

t

m

e

A

s

a

r

i

d

s

e

T

t

t

v

c

l

H

c

h

0

. Introduction 

Industrial applications of the flow and heat transfer in a thin 

iquid film have stimulated a great deal of research over the past 

everal decades. Substantial effort has been expended in develop- 

ng approximation and analytic techniques. By applying such meth- 

ds solutions of the flow problems are approximated that help in 

nalyzing, for example, the hydrodynamics of a flow in a thin liq- 

id film caused by an unsteady stretching surface in [1] that is fur- 

her extended to include heat transfer analysis [2] . An analytic in- 

estigation of thin film flow of biviscosity liquid over an unsteady 

tretching sheet is carried out in [3] where a quick thinning of 

he film is shown for biviscosity fluids as compared to Newtonian 

uids. Analytic solutions of such problems are constructed by em- 

loying the Homotopy analysis method (HAM) that provides a se- 

ies solution [4] , and are reported in [5,6] . In the study of thin film

ow over an unsteady stretching surface, the effects of the mag- 

etic field and viscous dissipation with general surface tempera- 

ure are included in [7,8] , thermo capillary and magnetic field in 

9] and internal heat generation with a general surface tempera- 

ure in [10] . The study of boundary layer flow of nanofluids has 

merged as another stream of research [11] . These fluids contain 

anoparticles like metal, carbides, nitrides, and oxides, etc. Such 

ano sized particles are suspended in a base fluid to engineer 
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anofluids. The presence of nanoparticles is reported to enhance 

he thermal conductivity and heat transfer characteristics [12] . 

The flow and heat transfer in a thin fluid film on an un- 

teady stretching surface has considerable effects on many indus- 

rial products like refinement and quality improvement. The ther- 

al and momentum flow in such processes have been analyzed 

xtensively, by applying numerical and perturbation techniques. 

nalytic solutions for this class of problems have also been con- 

tructed using HAM, for example, in [13] this procedure is adopted 

nd a good agreement with the results derived numerically [2] is 

eported. In [13] the fluid flow and heat transfer are considered 

n a thin Newtonian film of uniform thickness. The flow is caused 

ue to stretching of the horizontal elastic sheet. Further, variable 

urface temperature (varying with distance and time) is consid- 

red along with the motion of the sheet with a prescribed velocity. 

he boundary layer equations describing the velocity and tempera- 

ure fields in the thin liquid film are second order partial differen- 

ial equations (PDEs) with three dependent and three independent 

ariables. A similarity transformation is applied to map them to a 

oupled system of ordinary differential equations (ODEs). An ana- 

ytic solution for the deduced system of ODEs is presented using 

AM. 

Lie symmetry method is an algebraic technique that in most 

ases provides invariant analytic solutions for those differential 

quations (DEs) which admit some Lie point symmetries, see e.g 

14–19] . Lie symmetry method has been employed to study, e.g. 

he hyperbolic shallow water equations and the Green Naghdi 

odel [20] , shallow water equations in the Boussinesq approxi- 

https://doi.org/10.1016/j.chaos.2021.111115
http://www.ScienceDirect.com
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111115&domain=pdf
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ation [21] , shallow water equations with complete Coriolis force 

22] , rotating shallow water [23] , shallow water equations on a ro- 

ating plane [24] , two-Dimensional shallow water equations with 

onstant coriolis parameter [25] . Moreover, one dimensional opti- 

al system is constructed to reduce partial differential equations 

escribing the two-dimensional rotating ideal gas, to ordinary dif- 

erential equations that were further solved by quadratures [26] . 

pproximate symmetries have also been employed to derive sim- 

larity solutions for wave equations on liquid films [27] . Invariant 

olutions for a DE remain unaltered under the action of the sym- 

etry group spanned by the associated Lie point symmetry gen- 

rators. A Lie point symmetry of a system of PDEs offers reduc- 

ion through associated invariants (similarity transformations) in 

he number of its independent and dependent variables. We are 

nterested in reducing the independent variables as such succes- 

ive reductions lead to a system of ODEs for which there exist well 

stablished numerical and analytic solution schemes. In this paper 

e find a Lie algebra that is spanned by seven Lie point symme- 

ry generators for the system of PDEs with three dependent and 

hree independent variables, describing the flow and heat trans- 

er in a thin fluid film on an unsteady stretching surface. Further, 

e deduce invariants with the help of obtained symmetries which 

ransform the considered model to a system of PDEs with two in- 

ependent variables, when we go for a single reduction through 

hese invariants. Further, with symmetries of the once reduced sys- 

ems of PDEs, we derive associated invariants that map them to 

ystems of ODEs. To achieve such double reductions of the con- 

erned model we present an explicit procedure to assemble sim- 

larity transformations in each case with the help of two sets of 

nvariants drawn from symmetries of the model and its first re- 

uction. For the resulting systems of ODEs, we construct series so- 

utions by employing HAM. Lie point symmetry generators reveal 

any solvable classes here to study and analyze the flow and heat 

ransfer in a thin liquid film. However, they dictate the form of film 

hickness, velocity, and temperature of the stretching sheet, to con- 

ider initially with the flow model. In [13] specific forms of these 

hree are considered to facilitate the construction of the similarity 

ransformations, while here they are determined through the ad- 

itted Lie algebra. 

The outline of the paper is as follows. The second section is on 

eview of the considered model, derivation of Lie point symme- 

ries and invariants. The third section is on the construction of the 

imilarity transformations and double reductions of the considered 

odel. In the fourth section analytic solutions are presented for 

ystems of ODEs derived through double reductions. The last sec- 

ion is on conclusion and discussion. 

. Lie symmetries and invariants for the flow model 

A Newtonian fluid flow in a thin liquid film on a horizontal 

lastic sheet analyzed in [13] . The film has uniform thickness h (t) 

hile the flow within the film is due to the stretching of the sheet. 

his work further considered the smoothness of the surface of the 

lanar liquid film with no surface waves. Moreover, the viscous 

heer stress along with heat flux at the adiabatic free surface van- 

shes. Under the said assumptions the following two dimensional 

oundary layer equations are presented in [13] to describe the ve- 

ocity and temperature fields in the thin liquid film 

 x + v y = 0 , 

 t + uu x + v u y − νu yy = 0 , 

 t + uT x + v T y − κT yy = 0 , (1) 

here u and v are the x and y -components of velocity and T is

he temperature of the fluid. The subscripts in the above equations 

enote partial derivatives, e.g. time t in the subscript is a partial 
2 
erivative u t = 

∂u 
∂t 

. Further, ν is the kinematic viscosity, κ is ther- 

al diffusivity. The conditions that are associated with the above 

ystem read as 

 = 0 , u = U(x, t) , v = 0 , T = T s (x, t) , 

 = h (t) , u y = T y = 0 , v = h t = 

dh 

dt 
. (2) 

he second set of conditions imposes a kinematic constraint of the 

uid motion. The stretching surface velocity considered is 

 = 

bx 

(1 − αt) 
, (3) 

hat causes the flow in this problem and the temperature of the 

lastic sheet is taken as 

 s = T 0 − T re f 

bx 2 

2 ν
(1 − αt) 

−3 
2 , (4) 

here T 0 and T re f are temperature at the slit and reference tem- 

erature for all t < 

1 
α . In these expressions b and α are positive 

onstants and these specific forms of the surface velocity and tem- 

erature of the stretching sheet are chosen to facilitate the con- 

truction of the following similarity transformation 

= 

√ 

b 

ν(1 − αt) 

y 

β
, u = 

bx 

1 − αt 
f ′ (η) , v = −β

√ 

bν

(1 − αt) 
f (η) , 

 = T 0 − T re f 

bx 2 

2 ν(1 − αt) 
3 
2 

θ (η) . (5) 

his transformation satisfies the continuity equation and setting 

= 1 at the free surface yields h (t) = β

√ 

ν(1 −αt) 
b 

and maps (1) - (2)

nto the following system of ODEs 

f ′′′ + β2 
(
( f − Sη

2 

) f ′′ − ( f ′ + S) f ′ 
)

= 0 , 

 r −1 θ ′′ + β2 
(
( f − Sη

2 

) θ ′ − (2 f ′ + 

3 S 

2 

) θ
)

= 0 , (6) 

nd conditions 

f (0) = 0 , f ′ (0) = 1 , θ (0) = 1 , f (1) = S/ 2 , f ′′ (1) = 0 , 

′ (1) = 0 , (7) 

here prime denotes derivative with respect to η, P r = 

ν
κ is the 

randtl number, β is a constant determined during construction of 

he analytic solution using HAM, S = 

α
b 

is dimensionless measure 

f the unsteadiness. 

We derive Lie point symmetry generators for system (1) to de- 

uce similarity transformations of the form (5) to transform it into 

ystems of ODEs. A lie point symmetry for (1) is a vector field 

 = ξl 

∂ 

∂ψ l 

+ ηl 

∂ 

∂ζl 

, l = 1 , 2 , 3 , (8) 

here summation is over repeated indices l. Infinitesimal coordi- 

ates are denoted by ξl , ηl that are functions of the independent 

ariables t, x, y and the dependent variables u, v , T . While ψ l and

l denote the independent and dependent variables, i.e., ψ 1 = t , 

 2 = x , ψ 3 = y , ζ1 = u , ζ2 = v and ζ3 = T . The concerned system

1) is of second order PDEs while a couple of associated conditions 

2) and the continuity equations are written in terms of first or- 

er partial derivatives, therefore we need second X 

[2] and first ex- 

ensions X 

[1] , of (8) to operate on them. To demonstrate extension 

rocedure we consider the following formula 

 

[2] = X + ηt 
l 

∂ 

∂ζl,t 

+ ηx 
l 

∂ 

∂ζl,x 

+ ηy 

l 

∂ 

∂ζl,y 

+ ηtt 
l 

∂ 

∂ζl,tt 

+ ηxx 
l 

∂ 

∂ζl,xx 

+ ηyy 

l 

∂ 

∂ζl,yy 

, (9) 
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Table 1 

Symmetry generators, invariants and corresponding conditions. 

Symmetry and invariants Conditions 

X 1 y = 0 , u = U(x ) , v = 0 , T = T s (x ) 

x, y, u, v , T y = C, u y = v = T y = 0 

X 2 y = 0 , u = U(t) , v = 0 , T = T s (t) 

t, y, u, v , T y = h (t) , u y = T y = 0 , v = 

dh 
dt 

X 3 y = 0 , u = U(t) + 

x 
t 
, v = 0 , T = T s (t) 

t, y, u − x 
t 
, v , T y = h (t) , u y = T y = 0 , v = 

dh 
dt 

X 4 y = 0 , u = U(x, t) , v = 0 , T = 0 

t, x, y, u, v y = h (t) , u y = T y = 0 , v = 

dh 
dt 

X 5 y = 0 , u = xU(t) , v = 0 , T = T s (t) 

t, y, u 
x 
, v , T y = h (t) , u y = T y = 0 , v = 

dh 
dt 

X 6 y = 0 , u = 

U(x ) 
t 

, v = 0 , T = T s (x ) 

x, 
y √ 
t 
, tu, 

√ 

t v , T y = C 
√ 

t , u y = T y = 0 , v = 

C 
2 
√ 

t 

X 7 Does not leave T = T s (x, t) invariant 

t, x, y, u, v 
hat also contains all the first extension components. The first and 

econd extension coefficients are obtainable from the following for- 

ulas 

m 

l = D m 

ηl − ζl,t D m 

(ξ1 ) − ζl,x D m 

(ξ2 ) − ζl,y D m 

(ξ3 ) , 

 ∈ { t, x, y } , l = 1 , 2 , 3 , (10) 

nd 

tt 
l = D t η

t 
l − ζl,tt D t (ξ1 ) − ζl,tx D t (ξ2 ) − ζl,ty D t (ξ3 ) , 

xx 
l = D x η

x 
l − ζl,tx D x (ξ1 ) − ζl,xx D x (ξ2 ) − ζl,xy D x (ξ3 ) , 

yy 

l 
= D y η

y 

l 
− ζl,ty D y (ξ1 ) − ζl,xy D y (ξ2 ) − ζl,yy D y (ξ3 ) , 

 = 1 , 2 , 3 . (11) 

he expansion of the total derivatives D t , D x and D y is D m 

= 

∂ 
∂m 

+
l,m 

∂ 
∂ζl 

+ ζl,mm 

∂ 
∂ζl,m 

+ · · · , m ∈ { t, x, y } where the summation is

ver repeated indices l. In order to find the infinitesimal coordi- 

ates ξl , ηl for l = 1 , 2 , 3 of the operator (8) we apply its second

xtension X 

[2] on each equation of system (1) . For example, in case 

f first equation of the above system the invariance criterion reads 

s 

 

[2] (u x + v y ) | u x + v y =0 
= 0 , (12) 

here | 
u x + v y =0 

means the above expression is evaluated at first 

quation of the system (1) . The coefficients of u , v , T and their

artial derivatives (different powers of the derivatives), that ap- 

ear in the resulting equation are equated to zero. This provides 

 system of linear PDEs involving ξl , ηl and their partial deriva- 

ives. Solving the resulting system in MAPLE we find ξ1 = a 6 t + a 1 ,

2 = a 4 x + a 5 t + a 2 , ξ3 = 

a 6 y 
2 , η1 = a 4 u − a 6 u + a 5 , η2 = − a 6 v 

2 , η3 =
 3 T + a 7 where a 1 , a 2 , . . . , a 7 are constants and to each there cor-

esponds a Lie point symmetry generator, that are 

 1 = 

∂ 

∂t 
, X 2 = 

∂ 

∂x 
, X 3 = t 

∂ 

∂x 
+ 

∂ 

∂u 

, X 4 = T 
∂ 

∂T 
, 

 5 = x 
∂ 

∂x 
+ u 

∂ 

∂u 

, X 6 = t 
∂ 

∂t 
+ 

y 

2 

∂ 

∂y 
− u 

∂ 

∂u 

− v 
2 

∂ 

∂v 
, X 7 = 

∂ 

∂T 
. 

(13) 

ie point symmetries of DEs and their systems can alternatively 

e obtained using MAPLE package (PDEtools) with the (Infinites- 

mals command), this package employs the algorithm explained 

bove for obtaining Lie point symmetries. System (1) admits a 7- 

imensional Lie point symmetry algebra that is spanned by the 

bove generators. These symmetry generators should also leave all 

onditions (2) invariant. To investigate this invariance these gener- 

tors are employed on each component of the conditions through 

he criterion (12) . In these invariance criteria we apply zeroth ex- 

ension of X i for i = 1 , 2 , . . . , 7 except the cases which involve first

rder derivatives like u y and T y where we apply first extension of 

he symmetry generators readable from (9) to (10) . This exercise 

eveals certain conditions on the film thickness h (t) , velocity of the 

tretching sheet U(x, t) and temperature T s (x, t) . Moreover it infers 

hat X 7 does not leave all components of conditions (2) invariant. 

owever, when it appears in a linear combination with other gen- 

rators then becomes compatible with all conditions (2) in accor- 

ance with the invariance criterion (12) . Therefore, in the remain- 

ng work we are considering all X 1 − X 7 and their linear combi- 

ations for fabricating similarity transformations and deriving an- 

lytic solutions of the system (1) . 

The derived symmetries and their linear combinations are used 

o construct invariants that finally lead to similarity transforma- 

ions. A zeroth order invariant associated with the Lie algebra L 

7 

panned by X i , i = 1 , 2 , . . . , 7 is a function J of the independent and

ependent variables of the considered system of PDEs (1) . These 

re obtainable from an invariance criterion 

 J(t, x, y, u, v , T ) = 0 , i = 1 , 2 , . . . , 7 , (14) 
i 

3 
hat yields a linear PDE which on solving provides associated in- 

ariants. By repeating this procedure twice and labeling the ob- 

ained invariants as the new independent and dependent variables 

e construct the similarity transformations and use them to de- 

uce corresponding systems of ODEs. 

. Construction of similarity transformations and double 

eductions 

We derive similarity transformations through invariants of the 

ymmetry generators associated with a system of differential equa- 

ions. All the symmetry generators and their linear combinations 

ictate specific forms of film thickness h (t) , stretching surface ve- 

ocity U(x, t) and temperature of the elastic sheet T s (x, t) , when we

pply them on conditions (2) . For example, we consider X 5 here, it 

eaves all other conditions form invariant except u = U(x, t) , T = 

 s (x, t) , for which the invariance criterion (12) reads as 

 5 (u − U(x, t)) | 
u = U(x,t) 

= 0 , 

 5 (T − T s (x, t)) | 
T= T s (x,t) 

= 0 , (15) 

hat leads to linear PDEs −x ∂U 
∂x 

+ U(x, t) = 0 , −x ∂T s 
∂x 

= 0 . Solving

hem we obtain U(x, t) = xF (t ) , T s (x, t ) = G (t) which in the present

ase brings (2) to the following form 

 = 0 , u = xF (t) , v = 0 , T = G (t) , 

 = h (t) , u y = T y = 0 , v = 

dh 

dt 
. (16) 

otice that in these conditions we have u y = 0 and T y = 0 for

hich we need first extension X 

[1] 
5 

of the considered generator, to 

pply on them for investigation of invariance. This first extension is 

btainable from (9) to (10) that, indeed leaves the mentioned com- 

onents invariant. In Tables 1 and 2 conditions corresponding to 

ymmetry generators (13) and their linear combinations are listed. 

In other words system (1) and conditions (2) remain invari- 

nt under the symmetry generators and their linear combinations 

f h (t) , U(x, t) and T s (x, t) has the specific forms given in these

ables. For derivation of the invariants we employ the symmetry 

enerator X 5 in the invariance criterion (14) . It extends to a PDE 

 

∂ J 
∂x 

+ u ∂ J 
∂u 

= 0 that on solving yields invariants { t, y, u x , v , T } . Label-

ng them as new independent z 1 , z 2 , and dependent variables F 1 ,

 2 , F 3 reveals the following relations 

 1 = t, z 2 = y, F 1 = 

u 

, F 2 = v , F 3 = T . (17) 
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Table 2 

Symmetry generators, invariants and corresponding conditions. 

Symmetry and invariants Conditions 

X 3 + X 4 y = 0 , u = xU(t) , v = 0 , T = xT s (t) 

t, y, u 
x 
, v , T 

x 
y = h (t) , u y = T y = 0 , v = 

dh 
dt 

X 3 + X 6 y = 0 , u = 

U(x ) 
t 

, v = 0 , T = tT s (x ) 

x, 
y √ 
t 
, tu, 

√ 

t v , T 
t 

y = C 
√ 

t , u y = T y = 0 , v = 

C 
2 
√ 

t 

X 4 + X 6 y = 0 , u = U( x 
t 
) , v = 0 , T = T s ( 

x 
t 
) 

x 
t 
, 

y √ 
t 
, u, 

√ 

t v , T y = C 
√ 

t , u y = T y = 0 , v = 

C 
2 
√ 

t 

X 4 + X 7 y = 0 , u = xU(t) , v = 0 , T = T s (t) + ln (x ) 

t, y, u 
x 
, v , T − ln (x ) y = h (t) , u y = T y = 0 , v = 

dh 
dt 

X 5 + X 6 y = 0 , u = 1 + 

U(x −t) 
t 

, v = 0 , T = T s (x − t) 

x − t, y √ 
t 
, −t + tu, 

√ 

t v , T y = C 
√ 

t , u y = T y = 0 , v = 

C 
2 
√ 

t 

X 6 + X 7 y = 0 , u = 

U(x ) 
t 

, v = 0 , T = T s (x ) + ln (t) 

x, 
y √ 
t 
, tu, 

√ 

t v , T − ln (t) y = C 
√ 

t , u y = T y = 0 , v = 

C 
2 
√ 

t 

T

n

F

F

F

a

z

z

F

s

d

Y  

t

c

z

z

z

z

w

c

{  

t

χ

a

χ

w

(

(

g

g

g

χ

χ

a

g

(

(

χ

χ

r

a

β
v

T

c

Y

β

i

t

v

y

w

O

P

I

P  

t

s

a

u  

S

t

y

T

t

P

a

I

b

c

c

p

hese mappings transform system (1) and its conditions that are 

ow in the format (16) , to 

 1 + F 2 ,z 2 = 0 , 

 1 ,z 1 + F 2 F 1 ,z 2 + F 2 1 − νF 1 ,z 2 z 2 = 0 , 

 3 ,z 1 + F 2 F 3 ,z 2 − κF 3 ,z 2 z 2 = 0 , (18) 

nd 

 2 = 0 , F 1 = F (z 1 ) , F 2 = 0 , F 3 = G (z 1 ) , 

 2 = h (z 1 ) , F 1 ,z 2 = F 3 ,z 2 = 0 , F 2 = h z 1 . (19) 

urther for the double reduction symmetries and invariants of the 

ystem (18) are derived. This once reduced system admits a four 

imensional symmetry algebra spanned by the generators Y 1 = ∂ z 1 , 

 2 = ∂ F 3 , Y 3 = F 3 ∂ F 3 , Y 4 = z 1 ∂ z 1 + 

z 2 
2 ∂ z 2 − F 1 ∂ F 1 −

F 2 
2 ∂ F 2 . The symme-

ry generators Y 1 and Y 4 from this list are engaged further which 

onvert the conditions (16) to the following forms 

 2 = 0 , F 1 = C 1 , F 2 = 0 , F 3 = C 2 , 

 2 = C 3 , F 1 ,z 2 = F 2 = F 3 ,z 2 = 0 , (20) 

 2 = 0 , F 1 = 

C 1 
z 1 

, F 2 = 0 , F 3 = C 2 , 

 2 = C 3 
√ 

z 1 , F 1 ,z 2 = F 3 ,z 2 = 0 , F 2 = 

C 3 
2 

√ 

z 1 
, (21) 

hen Y 1 and Y 4 are applied on (16) through the invariance 

riterion. The invariants associated with these symmetries are 

 z 2 , F 1 , F 2 , F 3 } and { z 2 √ 

z 1 
, z 1 F 1 , 

√ 

z 1 F 2 , F 3 } , respectively. Considering

hem as new independent and dependent variables as 

= z 2 , g 1 = F 1 , g 2 = F 2 , g 3 = F 3 , (22) 

nd 

= 

z 2 √ 

z 1 
, g 1 = z 1 F 1 , g 2 = 

√ 

z 1 F 2 , g 3 = F 3 , (23) 

e perform the double reductions. The transformation (22) and 

23) maps system (18) with the associated conditions (20) and 

21) to 

 

′ 
2 + g 1 = 0 , 

 2 g 
′ 
1 + g 2 1 − νg ′′ 1 = 0 , 

 2 g 
′ 
3 − κg ′′ 3 = 0 , 

= 0 , g 1 = C 1 , g 2 = 0 , g 3 = C 2 , 

= C 3 , g ′ 1 = g 2 = g ′ 3 = 0 , (24) 
4 
nd 

 

′ 
2 + g 1 = 0 , 

g 2 − χ

2 

) g ′ 1 + g 1 (g 1 − 1) − νg ′′ 1 = 0 , 

g 2 − χ

2 

) g ′ 3 − κg ′′ 3 = 0 , 

= 0 , g 1 = C 1 , g 2 = 0 , g 3 = C 2 , 

= C 3 , g ′ 1 = g ′ 3 = 0 , g 2 = 

C 3 
2 

, (25) 

espectively. 

In the system (6) and its conditions there exist P r and S, that 

rise due to positive constants b and α with time −1 dimensions, 

and ν which denote dimensionless film thickness and kinematic 

iscosity of fluid respectively, in the associated transformations (5) . 

herefore, we introduce all of them in the transformations that are 

onstructed through invariants provided by the second symmetries 

 1 and Y 4 . For instance, we consider 

√ 

αν

b 
η = χ, 

−b 

α
f ′ = g 1 , β

√ 

νb 

α
f = g 2 , θ = g 3 , (26) 

n the invariants associated with Y 1 . Now combining it with the 

ransformations (17) and (22) , we finally obtain the following in- 

ertible mappings of the independent and dependent variables 

 = β

√ 

αν

b 
η, u = − b 

α
x f ′ , v = β

√ 

νb 

α
f, T = θ, (27) 

hich directly transform system (1) to the following system of 

DEs 

f ′′′ + γ ( f ′ 2 − f f ′′ ) = 0 , 

 r −1 θ ′′ − γ fθ ′ = 0 . (28) 

n the above system prime denotes derivative with respect to η, 

 r = 

ν
κ , is the Prandtl number, S = 

α
b 

, is measure of unsteadiness

hat is a dimensionless quantity and β2 = γ , is an unknown con- 

tant determined via the series solution procedure applied here, as 

 part of the problem. The conditions (2) transform to 

f (0) = 0 , θ (0) = 1 , f ′ (0) = 1 , f (1) = 0 , θ ′ (1) = 0 , 

f ′′ (1) = 0 , (29) 

nder (27) and assuming C 1 = −b/α, C 2 = 1 and C 3 = β
√ 

αν/b .

imilarly, for the second generator Y 4 along with X 5 we construct 

he following transformations 

 = β

√ 

ανt 

b 
η, u = − bx 

αt 
f ′ , v = β

√ 

νb 

αt 
f, T = θ . (30) 

hese transformations map the system (1) and associated condi- 

ions to the following system of ODEs 

f ′′′ + γ
(

Sη

2 

− f 

)
f ′′ + γ f ′ (S + f ′ ) = 0 , 

 r −1 θ ′′ + γ θ ′ 
(

Sη

2 

− f 

)
= 0 , (31) 

nd conditions 

f (0) = 0 , θ (0) = 1 , f ′ (0) = 1 , f (1) = 

S 

2 

, θ ′ (1) = 0 , 

f ′′ (1) = 0 . (32) 

n Table 3 we present similarity transformations and perform dou- 

le reductions of system (1) and conditions (2) using invariants 

orresponding to linear combination of symmetries from X 1 − X 7 

onsidering two at a time. There are fifteen such combinations 

ossible but we only proceed with those for which U(x, t) and 
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Table 3 

Double reductions. 

Case Symmetry Generator System of ODEs 

Similarity Transformation 

1 X 3 + X 4 f ′′′ + β2 ( f ′ 2 + S f ′ − f f ′′ + 

Sη
2 

f ′′ ) = 0 

y = β

√ 

αν(1+ t) 
b 

η, u = − bx 
α(1+ t) f 

′ Pr −1 θ ′′ + β2 (( f ′ − S) θ + ( Sη
2 

− f ) θ ′ ) = 0 

v = β
√ 

bν
α(1+ t) f , T = x (1 + t) θ

2 X 3 + X 6 f ′′′ + β2 ( f ′ 2 + S f ′ − f f ′′ + 

Sη
2 

f ′′ ) = 0 

y = β
√ 

ανt 
b 

η, u = − bx 
αt 

f ′ Pr −1 θ ′′ + β2 (( f ′ − S) θ + ( Sη
2 

− f ) θ ′ ) = 0 

v = β
√ 

bν
αt 

f , T = xtθ

3 X 4 + X 6 f ′′′ + β2 ( f ′ 2 + S f ′ − f f ′′ + 

Sη
2 

f ′′ ) = 0 

y = β
√ 

ανt 
b 

η, u = − bx 
αt 

f ′ Pr −1 θ ′′ + β2 (( f ′ + S) θ + ( Sη
2 

− f ) θ ′ ) = 0 

v = β
√ 

bν
αt 

f , T = 

x 
t 
θ

4 X 4 + X 7 f ′′′ + β2 ( f ′ 2 + S f ′ − f f ′′ + 

Sη
2 

f ′′ ) = 0 

y = β
√ 

ανt 
b 

η, u = − bx 
αt 

f ′ Pr −1 θ ′′ + β2 ( f ′ − S + ( Sη
2 

− f ) θ ′ ) = 0 

v = β
√ 

bν
αt 

f , T = ln tx + θ

5 X 5 + X 6 f ′′′ + β2 ( f ′ 2 + S f ′ − f f ′′ + 

Sη
2 

f ′′ ) = 0 

y = β
√ 

ανt 
b 

η, u = 1 − b(x −t) 
αt 

f ′ Pr −1 θ ′′ + β2 ( f ′ θ + ( Sη
2 

− f ) θ ′ ) = 0 

v = β
√ 

bν
αt 

f , T = (x − t) θ

6 X 6 + X 7 f ′′′ + β2 ( f ′ 2 + S f ′ − f f ′′ + 

Sη
2 

f ′′ ) = 0 

y = β
√ 

ανt 
b 

η, u = − bx 
αt 

f ′ Pr −1 θ ′′ + β2 ( f ′ − S + ( Sη
2 

− f ) θ ′ ) = 0 

v = β
√ 

bν
αt 

f , T = ln (xt) + θ

T

c

s

t

f

4

r  

o  

f

c

n

t

a

T

t

(

w

t  

i

s  

p

a

F

F

T

F

F

w

�

a

γ

F

d

L

L

b

d  

o

ϑ

 s (x, t) remain functions of both time and space variables, that 

learly is not the case with all the conditions that correspond to 

ingle symmetries presented in Table 1 while all in Table 2 fall in 

his category. Hence we investigate and construct analytic solutions 

or all cases in Table 2 . 

. Analytic solutions using homotopy analysis method (HAM) 

In this section analytic solutions for the systems of ODEs de- 

ived in the Table 3 are constructed using HAM (see, e.g. [13] ). In

rder to apply HAM on systems of the form (28) and (31) initial

unctions f 0 (η) and θ0 (η) are derived using the conditions asso- 

iated with these systems. Here we have two type of conditions 

amely (29) and (32) , hence we obtain two sets of initial functions 

hat read as 

f 0 (η) = η − 3 

2 

η2 + 

1 

2 

η3 , θ0 (η) = 1 , (33) 

nd 

f 0 (η) = η + 

3 S − 6 

4 

η2 + 

2 − S 

4 

η3 , θ0 (η) = 1 . (34) 

he following zeroth order deformation equations are constructed 

hen, which we present here in terms of system (31) 

(1 − p) L f [ F (η, p) − f 0 (η)] = ph f H f (η)(F ′′′ + �
(

Sη

2 

− F 

)
F ′′ 

+ �(S + F ′ ) F ′ ) , 
1 − p) L θ [�(η, p) − θ0 (η)] = ph θ H θ (η)(P r −1 �′′ 

+ �
(

Sη

2 

− F 

)
�′ ) , (35) 

here prime denotes differentiation with respect to η, p ∈ [0 , 1] is 

he embedding parameter, h f , h θ and H f (η) , H θ (η) are the auxil-

ary parameters and functions, respectively and L f = 

∂ 3 

∂η3 and L θ = 

∂ 2 

∂η2 . The auxiliary parameters are adjusted to make the Maclaurin 

eries for F (η, p) , �(η, p) and �(p) converge at p = 1 when ex-

anded with respect to p. The conditions associated with (35) read 
5 
s 

 (0 , p) = 0 , F ′ (0 , p) = 1 , �(0 , p) = 1 , 

 (1 , p) = 

S 

2 

, F ′′ (1 , p) = 0 , �′ (1 , p) = 0 . (36) 

he following holds for p = 0 and p = 1 

 (η, 0) = f 0 (η) , �(η, 0) = θ0 (η) , 

 (η, 1) = f (η) , �(η, 1) = θ (η) , �(1) = γ , (37) 

hich implies a variation in p (from 0 to 1) varies F (η, p) and 

(η, p) (from f 0 (η) and θ0 (η) ) to 

f (η) = f 0 (η) + 

∞ ∑ 

q =1 

f q (η) , θ (η) = θ0 (η) + 

∞ ∑ 

q =1 

θq (η) , (38) 

long with �(p) that goes from γ0 to γ = γ0 + 

∑ ∞ 

q =1 γq where 

f q (η) = 

1 

q ! 

∂ q F (η, p) 

∂ p q 
| 

p=0 
, θq (η) = 

1 

q ! 

∂ q �(η, p) 

∂ p q 
| 

p=0 
, 

q = 

1 

q ! 

∂ q �(p) 

∂ p q 
| 

p=0 
. (39) 

rom the zeroth order deformation equations we obtain q th −order 

eformation equations of the form 

 f [ f q (η) − λq f q −1 (η)] = h f H f (η) ζq (η) , 

 θ [ θq (η) − λq θq −1 (η)] = h θ H θ (η) ϑ q (η) , (40) 

y differentiating both equations of (35) q -times with respect to p, 

ividing it by q ! and setting p = 0 . In the above equations λq is 0

r 1 if q = 1 or q > 1 respectively and 

ζq (η) = f ′′′ q −1 −
q −1 ∑ 

n =0 

γq −1 −n 

n ∑ 

j=0 

( f j f 
′′ 
n − j − f ′ j f ′ n − j ) + 

Sη

2 

q −1 ∑ 

n =0 

γn f 
′′ 
q −1 −n 

+ S 

q −1 ∑ 

n =0 

γn f 
′ 
q −1 −n , 

 q (η) = P r −1 θ ′′ 
q −1 −

q −1 ∑ 

n =0 

γq −1 −n 

n ∑ 

j=0 

f j θ
′ 
n − j + 

Sη

2 

q −1 ∑ 

n =0 

γn f 
′ 
q −1 −n . (41) 
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Fig. 1. Case (1) and (2)-plots of f ′ (η) and θ (η) for h f = −1 and h θ = 0 . 2 . 

Fig. 2. Case (3)-plots of f ′ (η) and θ (η) for h f = −1 and h θ = −0 . 2 . 

Fig. 3. Case (4)-plots of f ′ (η) and θ (η) for h f = −1 and h θ = −0 . 007 . 

Fig. 4. Case (5)-plots of f ′ (η) and θ (η) for h f = −1 and h θ = −0 . 3 . 

6 
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Fig. 5. Case (6)-plots of f ′ (η) and θ (η) for h f = −1 and h θ = 0 . 008 . 
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[  
he associated conditions are given by 

f q (0) = 0 , f ′ q (0) = 0 , f q (1) = 0 , f ′′ q (1) = 0 , θq (0) = 0 , 

′ 
q (1) = 0 . (42) 

olutions of (40) can be written as 

f q (η) = f̄ q (η) + λq f q −1 (η) + C 6 + C 7 η + C 8 η
2 , 

q (η) = θ̄q (η) + λq θq −1 (η) + C 9 + C 10 η, (43) 

here f̄ q (η) and θ̄q (η) are obtained by integrating (40) and 

 6 , . . . , C 10 are constants of integration. They are determined 

hrough the conditions (42) that also provide γq −1 . Solving the 

 th-order deformation equations successively for q = 1 , 2 , 3 , . . . , Q

ields the Qth order analytic solutions of the form 

f (η) ≈
Q ∑ 

q =0 

f q (η) , θ (η) ≈
Q ∑ 

q =0 

θq (η) , γ ≈
Q ∑ 

q =0 

γq . (44) 

We use MAPLE for the above computations and construct ana- 

ytic solutions upto 10th-order of approximation for all cases stated 

n Table 3 . The results are shown in Figs. 1–5 . 

. Conclusion 

Lie symmetries of the model governing flow and heat transfer 

n a thin film over an unsteady stretching sheet that is a system of 

rst and second order PDEs with three independent and three de- 

endent variables, are obtained. These symmetry generators con- 

titute a 7-dimensional Lie algebra. By determining invariants for 

wo dimensional sub-algebras of the derived Lie algebra, we con- 

tructed similarity transformations. With these transformations, we 

chieve double reductions of the considered model that transform 

t into systems of ODEs. For some Lie symmetries and their lin- 

ar combinations, we found that the velocity and temperature of 

he stretching sheet are either constants or functions of only t or 

 . In those cases where we get both U and T s as functions of both

ime and space variables, we proceed further. In such cases, we ap- 

ly HAM on the derived systems of ODEs to find analytic solutions, 

hat are summarized with the help of graphs in Figs. 1–5 . There are

ix such cases that are dealt with HAM to obtain analytic solutions 

p to tenth order of approximation, by considering the auxiliary 

unctions H f (η) = H θ (η) = 1 , different values for the unsteadiness

arameter S(0 . 8 → 1 . 5) , the Prandtl number P r(0 . 05 → 3) and ob-

aining values for the auxiliary parameters h f , h θ through h -curves 

4] that make the solutions converge. For case (1) and (2) velocity 

nd temperature distributions are shown in Fig. 1 to increase with 

he increment in S and P r. Figs. 2–4 show velocity and temperature 

istributions of the cases (3), (4), and (5) which decrease with an 

ncrement in the Prandtl number while they increase with S. The 
7 
olution for the last case is plotted in Fig. 5 and it shows an in-

rement in the velocity and temperature with increment in S and 

 r. 
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