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Abstract Motivated by bio-chemical systems and ciliated propulsion, we consider the steady
laminar flow from a non-uniform wavy channel adjacent to a saturated porous medium which
has been investigated analytically using an integration technique. A highly permeability
domain is considered. We employed a sinusoidal complex wavy relation for the ciliated
walls. A mathematical relation was used to convert the rheological equations from (X, &)
coordinate system to a (i, &) dimensionless system. These rheological equations are sim-
plified under two biological assumptions, one is creeping phenomena, and the second one
is long-wavelength approximation. The solution of governing equations is obtained through
Mathematica software 10.0 with the help of integration technique in a wave frame. The
impacts of embedded hydro-mechanical parameters on the rheological features are studied.
The boundary layer phenomena are obtained in the velocity profile under larger magnetic
and porosity effects. The magnitude of pressure gradient is reduced under larger strength of
magnetic and porosity effects. The cilia length parameter has a dynamic role in enhancement
of the pressure gradient. The larger strength of the thermophoretic parameter has remarkable
effects in augmentation of volumetric fraction, heat and mass transfer phenomena. The out-
comes of current investigation are applicable in energy systems, manufacturing of ciliated
micro-pumps, petroleum engineering, thermal augmentation of physiological and chemical
fluids, and industrial magnetic materials processing.

4 e-mail: suntch@zjhu.edu.cn (corresponding author)

b e-mail: mk42@hw.ac.uk (corresponding author)

Published online: 17 June 2021 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-021-01641-3&domain=pdf
mailto:suntch@zjhu.edu.cn
mailto:mk42@hw.ac.uk

667 Page 2 of 17 Eur. Phys. J. Plus (2021) 136:667

1 Introduction

Cilia is microscopic fur-like configurations that exist in almost every living cell of human bod-
ies. Cilia is highly conserved organisms that oblige sensory functions, motile functions and
sometimes both. These organisms have the ability to deform in a wavelike structure to push
cells and to produce fluid streams in numerous organs of the living body. The metachronal
wave is a sequential action of cilia beating that refers to wavy movements. Due to their
particular metachronism, cilia play a dynamic role in some biological cycles such as respira-
tion, reproduction, circulation, locomotion and alimentation [1-7]. According to the dynamic
study mentioned in citations [8, 9], any deform in the cilia transportation can cause some
anthropological syndromes. All these theoretical studies mentioned above give productive
information about the motion of biological fluids that surround them; it is valuable and helpful
to apprehend different biological frameworks in the human body.

After these magnificent contributions, lots of mathematicians performed vital contribu-
tions in this direction and attempted dynamic contributions in this domain. These are cited in
the following references [10—14]. In 2014, Siddiqui et al., [10] investigated a mathematical
formulation of a viscous fluid flow through a cylindrical tube due to ciliary beating under
magnetic effects. They noticed that the pumping phenomena are more productive under the
larger strength of the magnetic effect. In another study, Siddiqui et al., [11] performed an
analytical study of cilia motion of viscous fluid in a channel. Their whole analysis is based
on creeping phenomena. They observed that under larger magnetic effects, the circulation of
bolus in trapping phenomena is reduced. They also compared their results with the flow rate
of spermatic fluid through the ductus efferentes. Farooq et al. [12] studied the fully developed
flow of viscous fluid in a vertical channel under biological approximation of lubrication the-
ory in a wave frame. They also observed the impacts of the magnetic field on flow features.
They found the analytical solutions of rheological equations by using adomian decomposi-
tion method. The cilia propulsion of viscous fluid through a curved channel was studied by
Asghar et al., [13]. Their whole analysis is based on a complex wavy pattern of metachronal
waves and physical effects of porosity parameter. They used curvilinear coordinates in the
derivation of rheological equations and solved these equations analytically with the help of
integration technique. Javid et al., [14] studied the motion of biological fluid in non-uniform
geometry under combined effects of magnetic and electric field. The flow equations are solved
numerically by using the BVP4C technique. They noticed that non-uniform parameters and
cilia length have a vital role in transportation of biological fluid.

From the past two decades, nanofluids have gained significant courtesy in chemical and
engineering domains. Nanofluid is a fluid that contains nanoparticles and the diameter of these
particles is less than 100 nm. These nanoparticles are comprised of metals, for example, alu-
minum oxides, copper oxides, nitrides or nano-metals. Choi [15] experimentally confirmed
that involvement of nano-size particles into the base liquid outcomes in the appreciable aug-
mentation in thermo-physical features of the base liquid. After the remarkable contribution of
Choi [15], researchers have utilized this idea of nanofluid in order to boost the performance
of heat transfer phenomena in numerous liquids. Therefore, various review articles [16-20]
including the advancement of nanofluid performance have been reported over the most recent
couple of years, mainly focused on analytical and numerical investigations of the thermo-
physical properties or the convective heat transfer of nanofluids. Kuznetsov and Nield [21]
studied the boundary layer flow of nanofluid in a vertical plate along with natural convection.
After one year of their study, they expanded their mathematical study for double-diffusion
convection [22]. A few investigations [23-28] on single and double diffusion convection in
nanofluids is numerous nature of flow channels have been introduced.
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Fig. 1 Geometry of the
porous-divergent channel

)

saan payvir) xapduio)

Divergent Channel

In the present investigation, the ciliated transport of nanofluid through a non-uniform
channel under biological approximations is presented. Furthermore, the impact of the Hall
device and porous medium on the cilia propulsion of nanofluid along with double diffusion
convection is discussed. The complex wavy scenario is taken in both boundary walls in order
to enhance the efficiency of ciliated micro-pumps. The physical impacts of involved physical
variables on the velocity profile, ciliated-pumping, trapping, volumetric fraction, heat and
mass transfer phenomena are investigated analytically and illustrated graphically.

2 Nanofluid mathematical modeling
2.1 Non-Uniform flow geometry

In the present flow analysis, the ciliated transportation of two-dimensional nanofluid is con-
sidered through a non-uniform flow geometry. Initially, the fluid is at rest, and its motion
takes place because of the metachronal waves present at the walls of the flow regime. The
complex nature of metachronal waves is considered in the current study in order to boost the
performance of non-uniform ciliated-pumps. Furthermore, the double-diffusion convection
is also considered in the nanoliquid flow analysis. The flow geometry under the discussion
is displayed in Fig. 1.
The constitutive equation for the complex flow geometry is mathematically defined by:

AR, 7) = cz(é1 sin(’il(f( - sf)) + G sin(iz()_( - sf)) + G sin(lij()_( - s;)>)

+b+a(X —st) = G(X,1), (Upper Ciliated Wall) (1
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AR 7) = —c1<61 sin(%(}_( - s;)) + G sin(%()_( _ s;)> +Cy sin(%()_( - sf)))
—b—a(X —st) = —G(X,i), (Lower Ciliated Wall) )

In the above equations, X is the axial coordinate, £ is the tangential coordinate, 7 is the time,
o is the wavelength, b is the channel half width, CI is the cilia length parameter with respect to
amplitudes, « is the non-uniform parameter, C_‘k (k = 1 — 3) are the wave amplitudes, w is the
wavelength, s is the wave speed, and B; (i = 1 — 3) are the physical parameters. Equations (1)
and (2) must satisfy the physical property that is define as: b < 1 + B2 + B3. Let us consider,
W is the axial component of velocity and U is the transverse component of velocity. There
is no flow in the orthogonal plane (z-direction).

The mathematical form of cilia tips in the axial direction is defined as:

X = Ro+ Cli {61 sin (ﬁ (% — sf)> +Cysin (ﬁ (% - sf)> +Cysin (@ (X — s;))}
w w w

3

where , « is the eccentricity of the elliptical motion and Xy is the reference position of the
particle.

The rheological equations describing the unsteady transportation of two-dimensional
nano-fluid along with double diffusion convection through the non-uniform ciliated micro-
pump under some external forces, such as magnetic force, porosity medium and Hall devices,
can be stated in terms Cartesian coordinate system (}_( , 5) as follows:

LW, 4
X 0
(202020 w0) 20 (20, 20
Pl T7ax T 0E) T Tax MGk T e
+G{ (1= @)p (@(T = 1) +a(C~T)) = (0, - ) (@ - 2]
N O'/Bg _
1+M2U’ ©)

<32W+32W)
M ox2 9E2

0k
+6[(1=2)0'(a(T = T) +a:(E=T)) = (- 0) (2 - 2]

Ry 9By
K 1+M2W _ _ ©)
aT - T  _dT (32T 9T 3’C  8°C
(,OCP) — +tU—+W— ) =k'| —+— ) +dtc| — + —
a  ax 9 aX2 " pE2 ax2 " 92

2

[ (afz T a0 aT) dt<(8T> <af>2>]
+{db| =—=—=+—=—|+—(|—=) +|—= ,
aX ax = 9E 0 ) To\\ax JE

_ _ _ i} i} 7
2 2 T
8—_+U—[_:+Wag =ds a—_ﬂ+a—_c +dct(—+i) (8)
ot X 9E axX2 o9&
(as‘z _aQ - as‘z) (azs'z a%z) dt( T )
—+U—=+W—)=db| —+— | + —_—t — 9)
ot X 0E 9X2  0g? aX2 0E2

@ Springer



Eur. Phys. J. Plus (2021) 136:667 Page Sof 17 667

where p is the density, p,, is the density of nanoparticle mass, o’ is the density of nanofluid at
T', P is the pressure, T is the temperature, C is the concentration,  is the volume fraction,
g is the gravity, u is the dynamic viscosity, K is the permeability of surface, drc is the
thermal diffusivity, dct is the Soret diffusivity, ds is the solutal diffusivity, o is the electrical
conductivity, db is the Brownian diffusion coefficient, dt is the thermophoretic diffusion
coefficient, k' is the thermal conductivity, a, is the volumetric thermal coefficient, a. is the
volumetric concentration coefficient, (ocp) is the heat capacities, By is the dimensional
magnetic parameter and M is the dimensional Hall parameter.

The transverse component of velocity is

3G aG 3G 0G  93G 0

=——=+—= (11)
%o ot 8X B8 of 9x

After using Eq. (1), Eq. (11) reduces to

_ —sa — @{ﬁlelcos«g' (X — sf)) +B2ézcos(%()}' — sf)) + E_gégcos(%()_( — st_))}
U= , _ )
1-— {,3 1co.s(ﬂ' (X - st_)) + Ezézcos(%()_( - st_)) + E3é3cos<%3()_( - sf))}
(12)

The axial component of velocity is

oF
ar

aF F 90X 9F OF -
+ —=W. (13)

W= = — = — =
%o or BX of 09X

Similarly, after using Eq. (3), Eq. (13) reduces to

—Ci’)“ {ﬁlelcos(%(){ - sz_)) + ﬁzezcos(ﬁz (X — st_)) +/§3é3cos(%()_( — st_))]

1-— %{,&é]cos(%( - sf)) + ﬁzezcos(ﬂz ( - sf)) + E3é3c0s(%()_( - st_))} '
(14)

The above system of equations is expressed in an unsteady state and transforms this flow
system from unsteady (time dependent) to steady (time independent) state by introducing the
following mathematical relations which are defined as:

W:

X=Xt §' =8 w () =W (X, 51) -5, u' (v, &) =U(X,81),

p (¥ E)=P(X.EQ).T (' €)=T(X.E10) (15)

An analytical solution of the above system of equations is tractable by introducing the
following non-dimensional parameters: x = x’/w, x is the axial coordinate, & = &'/b, &
is the transverse coordinate, ¢ = sf/w, t is the time, w = w'/s, w is the ax_ial velocity,
u = u'/8s, u is the transverse velocity, 8 = b/w, § is the wave number, h = H /b, h is the

L _' i . . . . _ = 2 .

upper wall, &; = C;/b, &; represent the distinct amplitude ratios, p = pb°/usw, p is the
pressure, ¢ = wa /b, « is the dimensionless divergent parameter, 0 = (T - T ) /T’, 0 1is the
dimensionless temperature, y = ([_] - )/ [, y is the dimensionless species concentration,

Q = (Q — @)/, Qisthe dimensionless volume fraction of nanoparticle, Re = psb/u, Re
is the Reynolds number, Pr = /L(pcp)/,oFk’, Pr is the Prandtl number, O = Q/sb, Qis
the dimensionless volumetric flow rate, Grt = gp’a,b*T’ (1 - ) /s, Grt is the thermal
Grashof number, Gre = gp'acb*0'(1 — Q') /s, Gre is the solutal Grashof number, Grf =
gb*Q/ (pp — p')/us, Grf is the nanoparticle Grashof number, mt = dr (pcp)p/k/, mt is the
thermophoresis parameter, mb = db(pc ,,)pQ/ /k', mb is the Brownian motion parameter,
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Bi = s,é,-/a), Bi (i =1 — 3) are the distinct amplitude ratios, Ha = Bo\/c’/p, Ha is the
Hartmann number (magnetic parameter), Da = /s K /jt, Dais the Darcy’s number (porosity
parameter), mct = dctT’/dsC’, met is the Soret parameter, mtc = dtcC’/k'T’, and mtc is
the Dufour parameter.

For more simplification, the velocity components can also be express in the term of a
stream function as:

w= w = _ (16)
&’ ox

After using scaling variables, the dimensionless form of radial and axial components of

velocity is:

—a — Cl{By €1 cos(B1x) + B2 €2 cos(Bax) + B3 €3 cos(B3x)}

T 1—a—Cl{B) €1 cos(Bix) + B2 €2 cos(Brx) + B €3 cos(B3x))’
andw = ! . (18)
1 — Clx{B1 €1 cos(B1x) + B2 €2 cos(Bax) + B3 €3 cos(P3x)}

After using dimensionless variables, applying the long wavelength and the low Reynolds
number approximations, the above system of equations reduces to

a7

dp 9w Ha? 1
—t— | —+— + 1) + Grt6 + Grey + Grf Q2 = 0, 19
dx | 9g2 (1+M2 pa2 )+ D)+ G+ Grey + Gr (19)
d
O} (20)
dé
320 32 I 30 36\2
—+mtc—y+mb——+mt — ] =0, (21)
082 082 9& 0& 9&
a2y 920
mct— =0, (22)
352 €2
92Q t 926
BTy, (23)
9E2 " mb 9€2
2 Ha? 1
Let, R = +—.
1+M?2  Da?

The alternative form of Eq. (19) is obtained by applying the cross-derivative between
Egs. (19) and (20). Then, Eq. (19) will reduce to:

9 (d%w
—(=— — R*(w+1) +Grtd + Grey +GrfQ | = 0, (24)
9& \ g2

w 9 90 ay a0

TV R on vereX varlE — o (25)

983 A& 9 A& 9

The boundary and thermal conditions for the present flow model are prescribed as:

ow
E:O,O:O,y:O,Q:O,at“;‘:O, (26)
w= ! ,0=1y=1,Q=1,at
1 — Cli{B1 €1 cos(B1x) + B2 €2 cos(Bax) + B3 €3 cos(B3x)}
& = h(x) = Cl(e; sin(B1x) + &2 sin(Box) + &3 sin(B3x)) + 1 + ax, 27
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2.2 Exact solutions

The exact solution of the heat phenomena is obtained after simplification that is given below:
e~ ¢
9=A11T+A12, (28)

where A1 and A1, are integration constants. Their values are obtained by using appropriate
boundary conditions (26b) and (27b):

A % nda o
= ——— an =,
1 —1+eht 27 T e
where ¢ =} (Imb).
The exact solution of the concentration equation is
_omt 39+1 1+mt ¢ 29)
Y= Thboe TR\ Tmb )t

For more simplification, Eq. (29) can also be expressed as after applying derivative with
respect to & to Eq. (28) and putting in Eq. (29), we acquire

e L m, (30)
YA T2 TR T e )

The exact solution of the volumetric fraction of nanoparticles is
Q tae + 1(1 + mct)é 3D
= —mct— + — mct)§.
& h

Alternative form of Eq. (31) is obtained after substituting Eq. (28) in Eq. (31), we acquire

etk

1
Q:Allmct§—2+z(l+mct)$. (32)

Exact solution of the axial velocity is obtained by using appropriate boundary conditions
given in Egs. (26a) and (27a) with the help of Mathematica 10.0 Software.

w— {e—h(R+{)—$(2R+{)(e(h+[)(R+[)hGrcmb(1 +met) (eth _ 2RE _ hRp R J20R, p
+eRRE + eR(2h+C)R§)a(R2 _ az) +(An e(h+:)RhBR<€R£;'+haR 4 2hR+Re+ha p _ Rh+ak p
_ o hR¥2R¢+ha p _ 2hR+havia, | 82R§+ha+§aa> " (eg‘(R+a)+h(3R+a)Grf(mb +mt)

— FRrIHECRAI Grf (mb + mt) + e HEH2REVa+Ed pA 1 h B — hmb Px + Grf(mb + mb)§)

+ NRP2REHhatba R A hB — hinb Px + Grf (mb + mt)§) + 2 R+3REvhatéay p

—Grf(mb + mt — Ajpmt) + mb(—Alan + ApGremet + Px + Rzz) }/

((1 + eth)hmbR3a(R4 - az)h). (33)

The mathematical form of the pressure gradient is acquired by putting Eqgs. (28), (30),
(32) and (33) in Eq. (19):
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dp
dx

<R2 - ;2) cosh[hR] + 2¢" B+ pGr f(mb + mt);z(R2 - ;2) + A“BhR((—l + eZhR)

= f{2eh(R+§)hGrcmb(1 + mb)gz(R2 - gz) — RO Gremb(1 + mct)(Z + th)gz

(71 + e”f)R2 + (71 + e2hR)Rg +eht (71 + ehR)2{2)h - 2AlzBeh(R+5>h3R2§2(R2 - gz) cos h[hR]
+ 26RO 2 mp O R (R2 - ;2) cos h[hR] — 2" RO hGr f (mb + mt) (2 + h2R2>§2(R2 - ;2)

cos h[AR] + 2¢" B+ p2Gre(1 + mct)R{2<R2 - ;2) sin AlAR] + 2A12e" O B2 Gremb R

<R2 — ;2) sinAlAR] — 2Alzeh(R+f)hZGrc;nbmc»tR;2(Rz - ;2) sin AlAR] + 2" RO pGr g

(mb + mt — Alzmt)RCZ(Rz - ;2) sinh[AR] — 2eh<R+C>h2mbR3/2z;2(R2 - ;2) sin h[hR]}/

(2e”<R+§>h2mbR2;2(R2 - ;2) cos h[hR] — 2eh<R+“h2mbR;2(R2 - ;2) sin h[hR]). (34)

3 Results and discussions

In this section, the physical effects of involved parameters on the flow features are analyzed
with the help of graphs. The flow diagram of a non-uniform complex ciliated channel is
displayed in Fig. 1. Representative results for the axial velocity profile, pressure gradient,
nanoparticles volumetric fraction, heat and mass transfer phenomena are illustrated in Figs. 2,
3,4, 5 and 6 below. These figures are plotted through Mathematica Software 10.0.

The physical influence of flow parameters on the velocity profile is displayed in Fig. 2.
These graphs are plotted at four dissimilar cross sections, say x = 0.1, 0.3, 0.6 and 0.9.
Figure 2a displays the influence of thermophoresis parameter, mt, on the velocity profile.
There is a strong increase in the magnitude of velocity, with a rise in mt value from O to
15 at cross sections y = 0.3, 0.6 and 0.9, and reverse pattern is predicted at cross section
x = 0.1. These outcomes are observed under Hall and porosity effects. Physically, this
graph shows that the thermophoresis parameter, mt, has a sound impact on the augmentation
of velocity magnitude. Figure 2b displays the influence of a divergent parameter, «, on the
velocity profile. There is a strong increase in the magnitude of velocity near the center of the
channel, say § = 0, and opposite trend is predicted near the boundary walls with a rise in
« value from O to 0.15 at can ross-sections x = 0.1, 0.3, 0.6 and 0.9. Additionally, these
consequences are observed under Hall and porosity effects. Physically, this graph shows that
the divergent parameter, o, has a dynamic impact on the augmentation of velocity magnitude
near the center of the channel, say £ = 0, and opposite trend is predicted near the boundary
walls. Figure 2c illustrates the velocity profile response with an enhancement in cilia length
parameter under thermophoresis, Hall and porosity effect. The magnitude of velocity profile
is boosted by increase in the cilia length, CI, from O to 0.15. Physically, this result shows that
the larger numeric values of cilia length parameter overcome the physical effects of Hall and
porosity parameters. The influence of Soret parameter, mct, on the velocity profile is displayed
in Fig. 2d under Hall and porosity effects. The magnitude of velocity profile increases by
increasing the numeric values of mct from O to 15. The obtained results are same in each cross
section but enhancement in the magnitude of velocity profile at cross section x = 0.9 much
larger than the other cross sections under Hall and porosity effects. Physically, this result
shows that the presence of Soret effects is much larger than mct = 0 and cross-sectional
area has a dynamic role in enhancement of velocity profile. The physical effects of Hall
parameter on the velocity profile are shown in Fig. 2e under thermophoresis, magnetic and
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porosity effects. Physically, these results show that the larger numeric values of Hall parameter
overcome the influence of magnetic field and thermophoresis effects. Similar nature of results
is predicted in each cross-sectional area. Figure 2f deals with the physical impacts of porosity

(@) z2}-mt=0,51215
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0.8
Y 0.6
0.4
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0.0
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“
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0.2

0.0 .. E N B A <N W

(c) 10
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0.4

0.2

0.0
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Fig. 2 Variation of mt on velocity profile at « = 0.2, mb = 0.2, mct = 0.1, mtc = 0.1, g1 =1, B =
2, B3=3, Ha=2,M =1, Da =1, Grt = Grc = Grf = 0.1, ¢ = 0.1, &5 = 0.2, &e3 = 0.4 b Variation
of « on velocity profile at mb = 0.2, mt = mct =mtc = 0.1, 81 =1, fp =2, B3 =3, Ha=2, M =
I, Da=1, Grt =Grc = Grif =Cl =0.1, k =1, ¢ =0.1,ep = 0.2, &e3 = 0.4. ¢ Variation of CI
on velocity profile at mb = 0.2, mt = mct = mtc = 0.1, 1 =1, fp =2, f3 =3, Ha =2, M =
I, Da=1,Grt =Grc =Grf = =0.1, k=1, ¢ =0.1,ep = 0.2, &e3 = 0.4. d Variation of mct on
velocity profileat mb = 0.2, Cl=mt =mtc = 0.1, g1 =1, fp =2, 3 =3, Ha=2, M =1, Da =
1, Grt = Grc = Gif = a =0.1, k =1, e =0.1,ep = 0.2, &e3 = 0.4. e Variation of M on velocity
profile at « = 0.2, mb = 0.2, mt = mct = mtc = 0.1, 8y =1, Bp =2, B3 =3, Ha =2, Da =
1, Grt = Grc = Gif = 0.1, ¢ = 0.1,&p = 0.2, &e3 = 0.4. f Variation of Da on velocity profile at
a=02 mb=02 mt=mct=mtc=0.1, By =1, fp =2, B3 =3, Ha=2, M =1, Grt = Grc =
Grf =0.1, ¢y =0.1,6p = 0.2, &3 =04
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Fig. 2 continued

parameter on the velocity profile under Hall and thermophoresis effects. The magnitude of
velocity profile is enhanced by increasing numeric value of porosity parameter under Hall
effects. The boundary layer phenomena are obtained in the velocity profile at larger porosity
effects. Physically, this result shows that the boundary layer phenomena in the velocity profile
are obtained for smaller numeric values of porosity parameter, and larger numeric values of
Darcy’s number overcome the magnetic and thermophoresis effects. All these results are
obtained for the complex wavy pattern of ciliated boundary walls.

In Fig. 3, the influence of various embedded parameters on the pressure gradient is
depicted. These graphs are plotted for a complex wavy scenario of metachronal waves.
Figure 3a deals with the influences of porosity parameter on the pressure gradient under Hall
and thermophoresis effects. The magnitude of pressure gradient is reduced as numeric values
of the porosity parameter enhance from 0.4 to 2. Additionally, wavy shape in the behavior of
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@) _yy

(b)

Lo p
wee LY

Fig. 3 a Variation of Da on pressure gradient at « = 0.1, Ha = 0.5, M = 1, mb = mt = mct = mtc =
0.1,Grt = Grf =Grc =0.1,Cl =05,k=1,81 =1, Bp =2, B3 =3, 1 =0.1,6p = 0.2, &e3 = 0.4
b Variation of Ha on pressure gradient at « = 0.1,Da =3, M = 1, mb = mt = mct = mtc = 0.1, Grt =
Grf =Grc =0.1,Cl =05, k=1,81 =1, Bp =2, B3 =3, 1 =0.1, 80 = 0.2, &e3 = 0.4. ¢ Variation
of M on pressure gradient at « = 0.1,Da = 3, Ha = 1, mb = mt = mct = mtc = 0.1, Grt = Grf =
Grc =0.1,Cl =05,k=1,1 =1, Bp =2, B3 =3, e1 =0.1,e9 = 0.2, &e3 = 0.4. d Variation of
Grt on pressure gradient at « = 0.1, Ha = 1,Da =3, M =1, mb = mt = mct = mtc = 0.1, Grf =
Grc =0.1,Cl =05k=1,61 =1, o =2, B3=3, &1 =0.1,ep = 0.2, &e3 = 0.4. e Variation of Grf
on pressure gradientata = 0.1, Ha =1,Da=3, M =1, mb = mt = mct = mtc = 0.1, Grt = Grc =
0.1,Cl=05k=1,81=1, B =2, B3 =3, e =0.1,6p = 0.2, &e3 = 0.4
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Fig. 3 continued

pressure gradient is easily observed due to the wavy nature of metachronal waves. Physically,
these results show that under larger porosity effects, the magnitude of pressure gradient is
larger via compared with smaller strength of porosity effect. The influence of magnetic field
on the pressure gradient is displayed in Fig. 3b under Hall and thermophoresis effects. It is
predicted that for the smaller strength of magnetic field, the magnitude of pressure gradient
is smaller in magnitude via compared with the larger strength of magnetic field. Physically, it
shows that as the numeric values of magnetic parameter increase, the magnitude of pressure
gradient is boosted too. In other words, it can say that the magnetic field has a dynamic role
in enhancement of the pressure gradient under thermophoresis, Hall and porosity effects.
In Fig. 3c, the pressure gradient with variation of x for various values of Hall parameter is
displayed. These results are achieved under larger magnetic and porosity effects. The mag-
nitude of pressure gradient is reduced by increasing the numeric value of Hall parameter
from 0.1 to 100. Physically, the larger strength of Hall parameter overcomes the magnetic
and thermophoresis effect. In other word, the magnitude of pressure gradient is larger for
smaller numeric values of Hall parameter as compared with the larger strength of Hall device
effects. Figure 3d deals with the impacts of thermal Grashof number on the pressure gradient
under Hall and porosity effects. The magnitude of pressure gradient is sharply enhanced via
increasing the numeric value of Grt from 0 to 30. In the absence of Grt, the physical effect
of porosity and Hall parameters are dominant when compared with the presence of ther-
mal Grashof number. The physical impacts of nanoparticle Grashof number are displayed
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Fig. 4 a Variation of mt on heat transferato = 0.1, mb = mct = mtc = 0.1, Grt = Grf = Grc = 0.1, Cl =
04, k=1, 1 =1, Bp =2, B3 =3, 1 =0.1,ep = 0.2, &e3 = 0.4 b Variation of mct on heat transfer

ata = 0.1, mt =mb=mtc =0.1,Grt =Grf =Grc =0.1, CI =04, k=1, 1 =1, o =2, 3=
3,61 =0.1,60 =0.2, &e3 = 0.4

in Fig. 3e under Hall and porosity effects. In the absence of Grf, the magnitude of pressure
gradient has larger in magnitude via compared with the nonzero numeric values of Grf.

Figure 4 deals with the influence of thermophoresis and Soret parameters on the heat
transfer concerned with the ciliated transportation of nanofluid along with double diffusion
convection through a complex divergent channel. These diagrams are plotted at four different
cross sections, say x = 0.1,0.3,0.6, 0.9. It is obvious through Fig. 4a, the magnitude of
heat transfer phenomena is augmented by enhancing the numeric value of the thermophoresis
parameter from O to 10. Physically, it means that the magnitude of heat transfer for nonzero
numeric values of thermophoresis parameter is much larger than mt = 0. Similarly, the
magnitude of heat transfer phenomena is increased by the numeric values of Soret parameter
from 0 to 9 under thermophoresis influences (see in Fig. 4b). Physically, these results show
that the magnitude of heat transfer in the presence of Soret influences is much larger than
mct = 0.

Figure 5 deals with the influence of thermophoresis and Soret parameters on the mass con-
centration concerned with the ciliated transportation of nanofluid along with double diffusion
convection through a complex divergent channel. These diagrams are plotted at four differ-
ent cross sections, say x = 0.1,0.3, 0.6, 0.9. It is obvious through Fig. 5a, the magnitude
of mass concentration is augmented by enhancing the numeric value of the thermophoresis
parameter from O to 50. Physically, it means that the magnitude of mass concentration for
nonzero numeric values of thermophoresis parameter is much larger than mt = 0. Similarly,
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Fig. 5 a Variation of mt on mass concentration at « = 0.1, mct = mb = mtc = 0.1, Grt = Grf = Grc =
0.1, Cl =04, k=1, By =1, Bp =2, B3 =3, 1 =0.1,e0 = 0.2, &e3 = 0.4. b Variation of mct on
mass concentration at « = 0.1, mt = mb = mtc = 0.1, Grt = Grf = Grc = 0.1, C/ =04, k=1, f; =
1, pp=2, B3=3, 1 =01, =0.2,&e3 =04

the magnitude of mass concentration is increased by the numeric values of Soret parameter
from 0 to 9.5 under thermophoresis influences (see in Fig. 5b). Physically, these results show
that the magnitude of mass concentration in the presence of Soret influences is much larger
than mct = 0.

Figure 6 deals with the influence of thermophoresis and Soret parameters on the nanopar-
ticle volumetric fraction concerned with the ciliated transportation of nanofluid along with
double diffusion convection through a complex divergent channel. These diagrams are plot-
ted at four different cross sections, say x = 0.1, 0.3, 0.6, 0.9. It is obvious through Fig. 6(a),
the magnitude of nanoparticle volumetric fraction is augmented by enhancing the numeric
value of the thermophoresis parameter from O to 100. Physically, it means that the magnitude
of nanoparticle volumetric fraction for nonzero numeric values of thermophoresis parameter
is much larger than mt = 0. Similarly, the magnitude of nanoparticle volumetric fraction
is increased by the numeric values of Soret parameter from 0 to 9.5 under thermophoresis
influences (see in Fig. 6b). Physically, these results show that the magnitude of nanoparticle
volumetric fraction in the presence of Soret influences is much larger than mct = 0.
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Fig. 6 a Variation of mt on nanoparticle volumetric fraction at « = 0.1, mct = mb = mtc = 0.1, Grt =
Gif =Gre =01, Cl =04, k=1, By =1, Bp =2, B3 =3, 61 =0.1,ep = 0.2,&e3 = 04
b Variation of mct on nanoparticle volumetric fraction at « = 0.1, mt = mb = mtc = 0.1, Grt = Gif =
Grc=0.1, Cl =04, k=1, B1=1, =2, 83=3,¢e,=0.1,60=02,&e3 =04

4 Conclusions

A mathematical problem has been presented for the creeping ciliated flow from a non-uniform
channel in the presence of double diffusion convection, Hall and porosity effects. The obtained
governing equations have been non-dimensionalized using similarity transformations. The
solution of the flow problem is obtained by using an integration method. Graphs of flow
features are plotted through Mathematica software 10.0 for the complex metachronal waves.
The physical impact of involved parameters on the flow features has been presented graphi-
cally and discussed in detail. A few dynamic flow characteristics have been determined, and
these are summarized as follows:

e The non-uniform and cilia length parameters have a dynamic role in enhancement of veloc-
ity profile. By increasing the numerical values of thermophoresis and Soret parameters, the
magnitude of velocity profile is also enhanced under Hall and porous medium. Hall device
has sound effects on the augmentation of velocity profile under porosity effects. All these
physical influences on the velocity profile are noticed at four different cross sections in a
wave frame. The boundary layer in the velocity profile is obtained under larger magnetic
and porosity effects.

e The pressure gradient is reduced for larger porosity effect and reverse trend is noticed for
larger strength of magnetic effects. Hall device and thermal Grashof number have dynamic
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roles in enhancement of pressure gradient. Due to the complex nature of ciliated wall, the
wavy pattern is present in the pressure gradient.

e The thermal Grashof number and solutal Grashof number have a sound impact in enhance-
ment of heat transfer phenomena and nanoparticle volumetric fraction for ciliated flow of
nanofluid.

e The solutal Grashof number boosts the magnitude of mass concentration of nanofluid.

e The complex wavy pattern is obtained for fixed value of amplitude ratios, say as & =
0.1, = 0.2, &e3 = 0.4.

e The graphs of velocity profile, heat transfer, mass transfer and volumetric fraction are
plotted at four distinct cross sections in wave frame.
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