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A numerical study is developed to examine the behavior of the forced/free convective flow
towards a stretchable Riga plate with generalized Fourier’s law. The flow is saturated
through Darcy–Forchheimer porous space and generated due to linear and second-order
velocity slip phenomena. Here, the main consideration is given to the energy equation
which is modeled in the presence of generalized Fourier’s law and heat generation absorp-
tion. Stagnation point is also discussed. Appropriate similarity variables lead to ordinary
differential equations. The dimensionless coupled equations i.e., momentum and energy
are numerically solved by the Built-in-Shooting method. The obtained results divulge
that the velocity field declines versus rising values of Darcy–Forchheimer number. The
temperature field of the working fluid boosts versus higher estimation of Eckert num-
ber and heat generation/absorption parameter. The important factors i.e., skin friction
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coefficient and temperature gradient of this research work are calculated by graphically
subject to mixed convection parameter, modified Hartmann number, Prandtl number
and heat generation parameter. It is observed from the graphical results that the impact
of skin friction is more between the stretched Riga surface and fluid particles in the
presence of rising values of mixed convection parameter.

Keywords: Generalized Fourier’s law; Darcy–Forchheimer porous space; second-order
velocity slip; stretched Riga plate; heat generation/absorption; nonlinear forced/free
convection.

1. Introduction

In the recent couple of decades, the fluid flows over a porous space have gained
much attention and consideration amongst the investigators, researchers, mathe-
maticians, engineers and physicians due to their valuable and fruitful applications
occurring in biomathematics, geophysical systems and chemical and mechanical
engineering’s. Some important and fruitful applications comprise grain storage, fer-
mentation process, crude oil production, flow of water in reservoirs, ground water
and recovery systems and ground water pollution and so many others. Fluid flow
by a porous surface is much protuberant in beds of fossil fuels, building thermal
insulation ingredients, petroleum materials, heat exchanger, energy storage units,
nuclear waste disposal, solar receivers and so forth others [Nield and Bejan (1999);
Karniadakis and Beskok (2002); Abbas et al. (2020); Muhammad et al. (2020a,
2020b); Haddad (2014); Siddiqui and Azim (2020); Khan et al. (2020a, 2020b);
Zhang et al. (2020)]. Considerable attention in the last couple of decades was given
to such types of mathematical engineering problems of porous space that modeled
under the concept of classical Darcy’s law. This law is only valid for lower fluid
velocity and smaller porosity means permeability rate. Also, this law is insufficient
when boundary constraints and inertial effects happen at larger flow rate. On the
other hand, the surpassing of Re (Reynolds number) from solidarity relates to non-
linear liquid flow. In view of such conditions, it is difficult to ignore the impacts of
boundary constraints and inertia. In 1901, Forchheimer [1901] replaced the Darcian
velocity by square velocity term to visualize the influences of boundary constraints
and inertia. In 1946, Muskat [1946] named as Forchheimer term, which consis-
tently holds for high Re. Jha and Kaurangini [2011] calculated new approximate
semianalytical results for steady state fluid flow between parallel porous channels.
Pal and Mondal [2012] explored the effects of variable viscosity and magnetohy-
drodynamics on Darcy–Forchheimer optimized flow subject to porous space. Sed-
deek [2006] utilized the Darcy–Forchheimer free/forced convective flow by a perme-
able surface in the presence of viscous dissipation, Brownian and thermophoresis
diffusions.

Magnetohydrodynamics (MHD, also known as hydro-magnetics or magneto-
fluid dynamics) is a branch of fluid mechanics (FM) that portrays the electro-
hydro-magnetic progressions emerging in magnetized flow (electrically conducting)
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affected by magnetic field (MF). In classical MHD, the liquid flow of extremely mag-
netized liquids could be conquered by an external applied magnetic field (EAMF).
The effectual flow control can be accomplished distinctively by implementing the
Lorentz force in parallel direction to the wall. Gailitis and Lielausis [1961] structured
a device in 1961 called Riga plate (RP) to generate the resistive force (Lorentz force)
in the parallel direction of wall. RP is an electro-magnetic actuator which incor-
porates span wise allied array of alternating permanent magnets and electrodes,
fixed on a surface of plate [Avilov (1998); Grinberg (1961)]. It tends to be used to
diminish the pressure drag and surface force (friction force) of submarines by avert-
ing the boundary layer separation and decay the rate of turbulence layer. Blasius
flow stability in the presence of MF and crossed electric boundary layer of RP is
examined by Tsinober and Shtern [1967]. Shah et al. [2020] worked on generalized
Fourier’s law in the forced/free convective flow over a stretched surface of RP.

In this research work, we have extended the research work of Shah et al. [2020],
with extra effects i.e., Darcy-Forchheimer porous medium instead of porous medium
and second-order velocity slip over a surface of RP where the RP is fixed at the
stretched surface. The flow is saturated via Darcy–Forchheimer porous medium
and caused via linear stretching. Appropriate similarity variables leads to ordinary
differential equations. Numerical results are computed through Shooting method
(bvp4c) [Liu (2011); Khan et al. (2017)]. Tlili et al. [2020], Hayat et al. [2016],
Khan et al. [2018], Xun et al. [2016], Khan et al. [2020], Dholey [2018], Khan and
Alzahrani [2020] and Gireesha et al. [2017] representing the influence of fluid flow
subject to various flow geometries.

2. Flow Equations

Here, magnetized second-order velocity slip flow towards a RP is considered, where
the flow is saturated due to Darcy–Forchheimer porous medium and generated by
linear stretching phenomenon. Nonlinear forced/free convection is considered. The
flow is discussed in semi-analytical domain where y = 0 highlights the stretched
surface and y → ∞ represents the ambient surface. Furthermore, u = Uw(x)+Uslip

denotes the stretching velocity with second-order velocity slip effects in x-direction,
where Uw(x) = ax the stretching velocity and Uslip = 2

3 (3−a∗l2

a∗ − 3
2

1−l2

Kn
)λ∂u

∂y −
1
4 (l4 + 2

K2
n
(1 − l2))λ2 ∂2u

∂y2 = L1
∂u
∂y + L2

∂2u
∂y2 the second-order velocity slip of viscous

fluid, where a∗(0 ≤ a∗ ≤ 1) stands for coefficient of momentum accommodation,
Kn the Kundsen number Kn = λ

l , λ molecular mean free path and l = min[ 1
Kn

, 1]
characteristics length subject to Kundsen number. Heat generation/absorption and
dissipations effects are accounted. For incompressible liquid, the mathematical form
of generalized Fourier’s law is addressed as

q + δE(V·∇q − q·∇V) = −k∇T. (1)

2042002-3



June 26, 2021 17:32 WSPC/0219-8762 196-IJCM 2042002

Y.-M. Chu et al.

Note that V,q, δE ,∇, T and k highlight the perfect velocity of fluid, heat flux, ther-
mal relaxation time, del operator, temperature and thermal conductivity, respec-
tively. In view of the above equation in mind, we have the following governing
expressions:

∂u

∂x
+
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∂y
= 0, (2)
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(4)

u = Uw(x) + Uslip, v = 0, T = Tw at y = 0

u = Ue = bx, T → T∞ as y → ∞

⎫⎬
⎭. (5)

Note that ν indicates the kinematic viscosity, u, v velocity components, π the con-
stant (π = 3.1416), x, y the Cartesian coordinates, Ue the free stream velocity, J0

current density in electrodes, ρ density, Q(= M0x) permanent variable magnets
magnetization, a1 width of the magnets between the electrodes, exp exponential
function, F (= C∗

b

xK∗ 1
2
) coefficient of nonuniform inertia, β1, β2 the linear/nonlinear

thermal expansion coefficients, C∗
b drag coefficient, g gravitational acceleration, T

temperature, δE thermal relaxation time, T∞ ambient temperature, cp specific heat,
Q∗ heat generation/absorption coefficient, k thermal conductivity, Tw wall temper-
ature, μ dynamic viscosity and a, b positive constant or stretching rates.

Let

u = axf ′(η), v = −√
aνf(η), θ =

T − T∞
Tw − T∞

, η =
√

a

ν
y. (6)
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After implementing Eq. (6), we have the following dimensionless equations:

f ′′′ + f ′′ − f ′2 + S2 + M exp[−Bη] + λθ(1 + βtθ)

− β∗(f ′ − S) − Fr(f ′2 − S) = 0, (7)

θ′′ + Pr(Ecf ′′2 + γ(ff ′θ′ − f2θ′′ − δfθ′)

− 2γEc(f ′f ′′2 − ff ′′f ′′′) + δθ + fθ′) = 0, (8)

f(0) = 0, f ′(0) = 1 + γ1f
′′(0) + γ2f

′′′(0), f ′(∞) = S,

θ(0) = 1, θ(∞) = 0.

}
(9)

Note that M(= πJoMo

8ρa2 ) indicates the modified Hartmann number, β∗( v
aK∗ ) the

porosity parameter, S(= b
a ) the ratio parameter, Fr(= C∗

b

K∗ 1
2
) the Darcy–Forchheimer

number, λ(= gβ1(Tw−T∞)
a2x ) the mixed convection parameter, βt(=

β2(Tw−T∞)
β1

)
the nonlinear thermal convection variable, B(= π

a1

√
ν
a ) the non-dimensional

parameter, Ec(= u2
w

cp(Tw−T∞) ) the Eckert number, δ(= Q∗
aρcp

) the heat generation
variable, Pr(= μcp

k∗ ) the Prandtl number, γ(= aδE) the thermal relaxation vari-
able, γ1(= L1

√
a
ν ), γ2(= L2

a
ν ) the first- and second-order slip parameters and

Rex(= Uwx
ν ) the Reynolds number.

The engineering curiosity like skin friction coefficient (Cfx) and heat transfer
rate (Nux) are mathematically defined as

Cfx =
τw

ρU2
w

,

Nux =
xqw

k(Tw − T∞)
,

⎫⎪⎪⎬
⎪⎪⎭, (10)

where τw and qw indicate the shear stress and heat flux.
The final dimensionless form is

Re0.5
x Cfx = f ′′(0)

Re−0.5
x Nux = −θ′(0).

}
. (11)

3. Discussion

Standard nonlinear (ODEs) Eqs. (7) and (8) with relevant restraints Eq. (9) are
disintegrated using a Built-in-Shooting method in Mathematica. This segment elab-
orates that how consequences of important problem variables comprising magnetic
parameter, porosity parameter, ratio parameter, mixed convection parameter, non-
linear convection parameter, heat generation/absorption parameter, Prandtl num-
ber, thermal relaxation parameter, first and second velocity slip parameters for
skin friction coefficient, velocity field, Nusselt number and temperature distribution
through Figs. 1–11 are noteworthy. Characteristics of nonlinear thermal convection
parameter against velocity field are scrutinized in Fig. 1. As anticipated, escalation
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in nonlinear thermal convection parameter results in contracting the velocity of
working fluid and also the momentum layer thickness. Impact of mixed convection
parameter on the velocity field is highlighted in Fig. 2. Here, velocity field is grow-
ing function of mixed convection parameter. Rising mixed convection parameter

Fig. 1. Behavior of velocity field against nonlinear thermal convection parameter.

Fig. 2. Behavior of velocity field against mixed convection parameter.
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corresponds to larger thermal expansion coefficient which eventually yields velocity
field augmentation. Figure 3 unveils second-order slip parameter influence on veloc-
ity field. This Figure reported that the rising estimations of second-order velocity
slip parameter enhance the velocity of working fluid particles. The deformation

Fig. 3. Behavior of velocity field against second-order velocity slip parameter.

Fig. 4. Behavior of velocity field against first-order velocity slip parameter.
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slowly and slowly transferred from the boundary of the stretched surface of sheet to
the working fluid and consequently the velocity field increases as the second-order
velocity slip parameter takes the maximum range and the remaining all param-
eters are fixed. The contribution of first-order slip parameter on velocity field is

Fig. 5. Behavior of velocity field against magnetic parameter.

Fig. 6. Behavior of velocity field against velocity ration parameter.
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examined through Fig. 4. One can see that velocity field decreases when first-order
velocity slip parameter is enlarged. Also, the momentum layer decays versus larger
first-order slip parameter. Figure 5 shows the variation of dimensionless velocity
field at various rising values of modified magnetic parameter or modified Hartmann

Fig. 7. Behavior of velocity field against heat generation parameter.

Fig. 8. Behavior of temperature field against thermal relaxation parameter.
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number. It is clear that the dimensionless velocity field increase significantly ver-
sus higher values of modified Hartmann number. Also, the layer thickness boosts
against larger modified Hartmann number. Figure 6 interprets the salient character-
istics of ratio parameter on the dimensionless velocity field. It is clearly noticed that

Fig. 9. Behavior of temperature field against Prandtl number.

Fig. 10. Behavior of skin friction against magnetic parameter and mixed convection parameter.
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Fig. 11. Behavior of heat transfer rate against heat generation parameter and Prandtl number.

the dimensionless velocity of the viscous working fluid at a stretched RP increases
versus higher ratio parameter. The analogous behavior is being observed for heat
generation parameter on the thermal distribution in Fig. 7. In physical point of
view, the enhancing impact of heat generation parameter upsurge the temperature
of the viscous material by a surface of RP, which intensifies the thermal state of the
working fluid. Figure 8 depicts the salient attributes of thermal relaxation parameter
on the temperature field of viscous field towards a stretched Riga surface. Uplift-
ing the range of thermal relaxation parameter heighten the temperature of viscous
working fluid by a stretched surface of RP. It is also remarked that the thermal
layer boosts against higher thermal relaxation parameter. The influence of Prandtl
number on the dimensionless thermal field and its associated layer thickness is out-
lined in Fig. 9. Here, both thermal layer and thermal distribution decline against
progressive estimations of Prandtl number. The rising impact of Prandtl number
diminishes the temperature of working fluid. Mathematically, Prandtl number is the
ratio of momentum to thermal diffusivity. The smaller values of Prandtl number,
the thermal diffusivity is dominant, while the momentum diffusivity is dominant
versus larger Prandtl number. Also, when the Prandtl number upsurges, then the
diffusivity associated to thermal field is lesser because the diffusion amount falls.
That why the thermal field decays. The physical impact of skin friction coefficient
and heat transfer rate i.e., Nusselt number against modified Hartmann number,
mixed convection parameter, Prandtl number and heat generation parameter are
displayed in Figs. 10 and 11. As anticipated, the skin friction coefficient significantly
develops means increases versus larger mixed convection parameter. In Fig. 11,
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the heat transfer rate is decreased when we enhance the values of heat generation
parameter.

4. Concluding Remarks

A computational work is developed to scrutinize the behavior of forced/free con-
vective flow towards a stretchable RP with generalized Fourier’s law. The flow is
saturated through Darcy–Forchheimer porous space and generated due to linear
and second-order velocity slip phenomena. Here, the main consideration is given to
the energy equation which is modeled in the presence of generalize Fourier’s law and
heat generation absorption. Stagnation point is also discussed. Appropriate simi-
larity variables lead to ordinary differential equations. The dimensionless coupled
equations, i.e., momentum and energy are numerically solved by Built-in-Shooting
method. The essential facts of the present communication are as follows:

• The velocity field declines versus nonlinear thermal convection parameter.
• The velocity of working fluid over a stretched Riga surface is more versus modified

Hartmann number.
• Higher heat generation parameter and thermal relaxation parameter yield larger

thermal field.
• A rise in second-order slip parameter corresponds to an enhancement in velocity

field.
• Skin friction coefficient is growing function of mixed convection parameter.
• Heat transport is lesser against rising values of heat generation parameter.
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