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Modelling and numerical 
computation for flow of micropolar 
fluid towards an exponential 
curved surface: a Keller box 
method
Qiu‑Hong Shi1, Tayyaba Shabbir2, M. Mushtaq2, M. Ijaz Khan3, Zahir Shah4,5* & 
Poom Kumam6,7*

The numerical analysis of MHD boundary layer non‑Newtonian micropolar fluid due to an 
exponentially curved stretching sheet is developed in this study. In the energy equation effects 
of viscous dissipation are included. For the mathematical description of the governing equations 
curvilinear coordinates are used. By utilizing exponential similarity variables, the modelled partial 
differential equations (PDEs) are reduced into ordinary ones. The resultant non‑linear ODEs are 
numerically solved with two methods shooting and Keller box method. The study reveals that the 
governing parameters, namely, radius of curvature, material parameter, magnetic parameter, Prandtl 
number and Eckert number have major effects on the fluid velocity, micro‑rotation velocity, surface 
friction, couple stress and heat transfer rate. The results indicate that the magnetic field diminishes 
the fluid velocity inside the hydrodynamics boundary layer whereas it enhances the temperature 
inside the thermal boundary layer. Microrotation profile decreases near the surface, as the magnetic 
parameter and radius of curvature increases but far away behavior is opposite. The material parameter 
enhances the velocity and microrotation profile whereas, opposite behaviors is noticed for the 
temperature distribution. Obtained outcomes are also compared with the existing literature and the 
comparison shows a good agreement with existing studies.

The stretching sheets due to heat transfer and boundary layer flow fascinated the researchers and the engineers 
due to its vast number of applications in industry such as liquid composite molding, wire drawing, metal spin-
ning, extrusion of polymer sheets, gas blowing, manufacturing of plastic films, hot rolling and many more.

Sakiadis1 reported the effects of constant velocity over a solid wall. Tsou et al.2 examined the characteristics of 
heat transfer onto a stretching sheet. Analytical solution regarding the viscous fluid flow prompted by a linearly 
stretching surface was scrutinized by  Crane3. Gupta and  Gupta4 analyzed the effects of linear velocity over a 
stretchable sheet by taking into account the suction/blowing. Grubka and  Bobba5 considered the heat transfer 
characteristic by taking into consideration the linear velocity with variable temperature distribution. By consid-
ering exponential velocity and temperature distribution Magyari and  Keller6 firstly examined the flow behavior 
and heat transfer characteristics over a stretchable surface.  Elbashbeshy7 carry forward the work of Magyari and 
Keller by considering the influence of suction and blowing on the surface. The characteristics of viscoelastic fluid 
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regarding an exponential stretchable sheet was studied by  Khan8.  Ishak9 and Bidin and  Nazar10 analyzed the 
boundary layer viscous fluid along a stretched surface with an exponential velocity under the influence of thermal 
radiations. Mass transfer towards an exponentially stretchable porous sheet was presented by Mukhopadhyay 
et al.11. Raju et al.12 worked on the flow features of Casson fluid over an exponential stretching with permeability. 
They also accorded the effects of chemical reaction, viscous dissipation, heat source and magnetic field. For other 
related works on flow due to stretching surface, the following  references13–18 can be referred.

The classical hydrodynamics of Naiver Stoke model are not capable to describe the flow behavior of micro-
structure fluids viz; liquid crystals, polymeric suspension and animal blood. Physically micropolar fluids cor-
respond to the fluids having randomly oriented (spherical), rigid micro-particles of different shape in a viscous 
medium, where these particles deformation is not examined. The micropolar fluids theory has been presented by 
 Erigen19,20. Peddieson and  McNitt21 numerically examined the boundary layer flow by considering the micropo-
lar fluid model. Rosali et al.22 found the solution of boundary driven micropolar fluid model over a shrinking/
stretching surface. Mandal and  Mukhopadhyay23 reported the micropolar fluid generated by a stretchable expo-
nentially sheet in the presence of moving free stream.

The stretching of curved surface has gained much attraction because of its mathematical interest for solving 
nonlinear equations in curvilinear coordinates. Sajid et al.24 pioneered the effects of linear velocity over a curved 
surface. Heat transfer mechanism over a curved stretched sheet along with a linear velocity was scrutinized by 
Abbas et al.25. The concept of suction and injection over a curved unsteady shrinking/stretching surface was 
incorporated by Rosa and  Pop26. Sajid et al.27 documented the non-Newtonian micropolar fluid flow generated 
by the curved surface. Naveed et al.28 further extended the problem by adding the effects of thermal radiation. 
Hayat et al.29 pointed out the effects of MHD and homogenous-heterogenous reaction respectively in the flow 
of micropolar fluid along a curved stretched wall. Saleha et al.30 examined the time-dependent micropolar 
fluid towards a linearly stretching porous wall. All these investigations were made for the linear velocity over a 
curved surface. The effects of non-linear (power-law) velocity over the curved stretched surface were given by 
Sanni et al.31 By considering the effects of power law velocity Hayat et al.32 analyzed the numerical computation 
of nanofluid over a curved stretching sheet. Okechi et al.33 initiated the flow over a curved surface by taking 
into consideration the exponential similarity variables and velocity. Hayat et al.34 performed the characteristics 
of Darcy-Forchheimer flow of nanofluid towards a curved stretchable geometry with exponential velocity and 
temperature. Kamar et al.35 studied the problem of Casson fluid in the geometry of exponentially stretched curved 
surface under the influence of thermal radiation. Reddy et al.36 analyzed the dual solution for a non-Newtonian 
nanofluid flow through a curved surface by taking into consideration of Soret and Dufour effects.

In this novel research work, steady, incompressible flow of non-Newtonian fluid (micropolar fluid) is 
addressed over a stretched curved surface. Viscous effects is accounted. The governing flow expression are first 
altered into ordinary system and then computational results are computed. The main concern here to compute 
the numerical results through highly valuable numerical technique Keller box method and Runge–Kutta based 
Shooting Method. Numerical solution of the velocity, micro-rotation velocity, temperature profile, couple stress, 
skin friction coefficient, and Nusselt number are calculated numerically and presented graphically.

Mathematical formulation
For this work, we consider steady, incompressible boundary driven flow of a micropolar fluid towards an expo-
nentially curved stretched surface with subject to viscous dissipation. It is assumed that the sheet is stretching 
with exponential velocity of the form uw(s) = ce

s
L , where c is constant, having the dimension of velocity and L 

represents the characteristic length. The surface has radius of curvature R. The schematic flow geometry is illus-
trated in Fig. 1. It is assumed the sheet has exponential temperature Tw(s) = T∞ + Toe

s
L , where T∞ is ambient 

temperature and To is constant. under the usual assumption the governing equation of the model are (see Sajid 
et al.27).

Figure 1.  Flow geometry.
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Mass conservation equation:

Momentum equation:

Angular Momentum equation:

Energy equation:

N is the microrotation velocity, ρ, ko, and cP are the density, thermal conductivity and specific heat respectively.
Here

where K1 =
k∗

µ
represents the material parameter, and j = 2νL

ce
s
L

 denotes micro inertial per nit mass, γ ∗ and k∗ 
indicate the spin gradient and vortex viscosity respectively.

The boundary conditions for the problem are (see Okechi et al.33)

We define the following dimensionless variable transformations

By applying the transformation of Eqs. (8)–(10) on the system of Eqs. (1)–(5) the mass conversation is satis-
fied automatically and the remaining the Eqs. (2)–(5) reduced into the following form

The pressure is eliminated from Eqs. (11)–(12)

(1)[(r + R)v]r + Rus = 0,

(2)
u2

r + R
=

1

ρ
pr ,

(3)vur+
Ru

r + R
us+

uv

r + R
= −

1

ρ

R

r + R
ps+

(

ν +
k∗

ρ

)[

urr +
1

r + R
ur −

u

(r + R)2

]

−
k∗

ρ
Nr−

σB2ou

ρ
,

(4)vNr +
Ru

r + R
Ns =

γ ∗

ρj

(

Nrr +
1

r + R
Nr

)

−
k∗

ρj

(

2N + ur +
u

r + R

)

,

(5)ρcp

(

vTr +
Ru

r + R
Ts

)

= kO

(

Trr +
1

r + R
Tr

)

+ (µ+ k∗)

(

ur −
u

r + R

)2

,

(6)γ ∗
=

(

µ+
k∗

2

)

= µ

(

1+
K1

2

)

j,

(7)u = uw = ce
s

L , v = 0, N = −mo

∂u

∂r
, T = Tw at r = 0,

u → 0,
∂u

∂r
→ 0, N → 0, T → T∞ as r → ∞

(8)u = ce
s
L f ′(ξ), v = −

R

r + R

√

cνe
s
L

2L
[f (ξ)+ ξ f ′(ξ)],

(9)ξ =

√

ce
s
L

2νL
r, p = ρc2e

2s
L P(ξ),

(10)N = ce
s
L

√

ce
s
L

2νL
g(ξ), θ =

T − T∞

Tw − T∞

.

(11)
f ′2

ξ + δ
= P′,

(12)

4δ

ξ + δ
P+

δξ

ξ + δ
P′ = (1+ K1)

(

f ′′′ +
f
′ ′

ξ + δ
−

f ′

(ξ + δ)2

)

+
δ

(ξ + δ)2
ff ′
+

δ

ξ + δ
ff ′′

−
(ξ + 2δ)

(ξ + δ)2
δf ′

2
−K1g

′
−M2f ′

(13)
(

1+
K1

2

)(

g ′′ +
g ′

ξ + δ

)

− K1

(

2g + f ′
′

+
f ′

ξ + δ

)

+
δ

ξ + δ
fg ′ −

3δ

ξ + δ
f ′g = 0,

(14)θ ′
′

+
θ ′

ξ + δ
+

δPr

ξ + δ

(

f θ ′ − 2f ′θ
)

+ PrEc(1+ K1)

(

f ′′ −
f ′

ξ + δ

)2

= 0,
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M2 =
2σB2oL
ρc  is the magnetic parameter, δ =

√

ce
s
L

2νL R is the radius of curvature, Pr = ko
µcp and Ec = u2w

cp(Tw−T∞)
 

denote Prandtl and Eckert number, respectively.
The boundary conditions become

where  m0 (0 ≤ m0 ≤ 1 ) is a constant.
The skin friction coefficient  Cfs for our physical model is given as

where τrs imply the wall shear stress.
The dimensionless expression for skin friction is

For temperature distribution the local heat transfer rate is given as

where qw represents the wall heat flux.
It can be written in non-dimensional form as follow

Couple stress on the surface is define as

The local Reynolds number is Res = uws
ν
.

Numerical scheme
The non-linear ODEs Eqs. (13)–(15) with boundary conditions (16)–(17) are solved numerically by applying 
two independent numerical methods; (1) Keller box method and (2) shooting method.

We define new variables for the implementations of these numerical techniques,

where A1 =
2

ξ+δ
, A2 = − 1

(ξ+δ)2
− M2

1+K1
, A3 =

1

(ξ+δ)3
− M2

(ξ+δ)(1+K1)
, A4 =

δ
(ξ+δ)(1+K1)

, A5 =
δ

(ξ+δ)2(1+K1)
, 

A6 = − δ

(ξ+δ)3(1+K1)
, A7 = − 3δ

(ξ+δ)2(1+K1)
, A8 = − 3δ

(ξ+δ)(1+K1)
, A9 = −

K1

1+K1
, A10 = −

K1

(ξ+δ)(1+K1)
, B1 = 1

(ξ+δ)
, 

B2 = −
2K1

(1+
K1
2
)
, B3 = −

K1

(1+
K1
2
)
, B4 = −

K1

(ξ+δ)(1+
K1
2
)
, B5 =

δ

(ξ+δ)(1+
K1
2
)
, B6 = − 3δ

2(ξ+δ)(1+
K1
2
)
, B7 =

δPr
ξ+δ

, 

B8 = − 2δPr
ξ+δ

, B9 = PrEc, B10 = − 2PrEc
ξ+δ

, B11 = PrEC
(ξ+δ)2

.

Boundary conditions (16) and (17) become

(15)
(1+ K1)

(

f iv +
2f ′′′

ξ+ δ
−

f ′
′

(ξ+ δ)2
+

f ′

(ξ+ δ)3

)

+
δ

ξ+ δ
ff ′′′

+
δ

(ξ+ δ)2
ff ′′

−
δ

(ξ+ δ)3
ff ′

−
3δ

ξ+ δ
f ′f ′

′

−
3δ

(ξ+ δ)2
f ′
2
− K1

(

g ′′ +
g ′

ξ + δ

)

−M2

(

f ′′ +
f ′

ξ + δ

)

= 0.

(16)f (0) = 0, f ′(0) = 1, g(0) = −m0f
′′(0), θ(0) = 1 at ξ = 0,

(17)f ′(ξ) = 0, f ′′(ξ) = 0, g(ξ) = 0, θ(ξ) = 0asξ → ∞.

(18)Cfs =
τrs

ρu2w
, τrs =

[

(

µ+ k∗
)

(

∂u

∂r
−

u

r + R

)

+ δN

]

r=0

,

(19)
√

L

2s
Re

1
2
s Cfs = (1+ K1)

(

f ′′(0)−
f ′(0)

δ

)

,

(20)Nus =
sqw

ko(Tw − T∞)
, qw = −ko

(

∂T

∂r

)

r=0

,

(21)
√

2L

s
Re

− 1
2

s Nus = −θ ′(0).

(22)Cs =
Mw

µjUw
, Mw = γ

(

∂N

∂r

)

r=0

,

(23)2LsRe−1
s Cs =

(

1+
K1

2

)

g ′(0)

(24)f ′ = u, f ′′ = v f ′′′ = w, g ′ = p, θ ′ = q,

(25)w′
+ A1w + A2v + A3u+ A4fw + A5fv + A6fu+ A7u

2
+ A8uv + A9p

′
+ A10p = 0

(26)p′ + B1p+ B2g + B3v + B4u+ B5fp+ B6ug = 0,

(27)q′ + B1q+ B7fq+ B8uθ + B9v
2
+ B10uv + B11u

2
= 0,
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The transformed problem given by Eqs. (24)–(27) subject to boundary condition (28) and (29) are solved 
numerically via implicit finite difference scheme referred to as Keller box method (see Cebeci and  Bradshaw37).

Net points are defined as

Using center finite difference approximation at the mid-point of ξj− 1
2
 in Eqs. (24)–(27)

The corresponding boundary conditions are

Equations (31)–(38) are a system of nonlinear equation, Newton’s quasi-linearization approach is used to 
solve these equations, thus we have

Using Eq. (40) into Eqs. (31)–(38) and ignoring the quadratic terms of δ

(28)f (0) = 0, u(0) = 1, g(0) = −mov(o), θ(0) = 1,

(29)u(∞) = 0, v(∞) = 0, g(∞) = 0, θ(∞) = 0.

(30)ξ1 = 0, ξj = ξj−1 + hj , j = 2, 3, . . . , J , ξJ = ξ∞.

(31)h−1
j

(

f ij − f ij−1

)

= ui
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2

,

(32)h−1
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(
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)
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(
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)
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,
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(
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i
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2
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2
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,
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(
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1
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2
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i
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2
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i
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2
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i
j− 1

2
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i
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2
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(39)f i1 = 0, ui1 = 1, gi1 = −m0v(0), θ
i
1 = 1, viJ = 0,wi

J = 0, giJ = 0, θ iJ = 0.

f i1 = 0, ui1 = 1, gi1 = −m0v(0), θ
i
1 = 1, viJ = 0,wi

J = 0, giJ = 0, θ iJ = 0

(40)
f
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j = f

(k)
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(
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2
,

(42)δuj − δuj−1 −
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2
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(

δvj + δvj−1

)

= (r2)j− 1
2
,
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1

2
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(
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)
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2
,
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Boundary conditions after applying the Newton’s quasi-linearization approach become

where

Coefficients are

(α1)j = (α2)j =
A2

2
+

A5

2
fj− 1

2
+

A8

2
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2
,
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2
+
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2
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+
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+
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2
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1
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2
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2
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A9
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+
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2
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+
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2
,

(α11)j = (α12)j =
B5
2
pj− 1

2
, (α13)j = (α14)j =

B4
4
+

B6
2
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2
,

(α15)j = (α16)j =
B2
2
+

B6
2
uj− 1

2
, (α17)j = (α18)j =
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2
,

(α19)j =
1
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+

B1
2
+

B5
2
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2
, (α20)j = − 1

hj
+

B1
2
+

B5
2
fj− 1

2
,

(α21)j = (α22)j =
B7
2
qj− 1

2
, (α23)j = (α24)j =

B8
2
θj− 1

2
+

B10
2
vj− 1

2
+ B11uj− 1

2
,

(α25)j = (α26)j =
B8
2
uj− 1

2
, (α27)j = (α28)j =

B9
2
vj− 1

2
+

B10
2
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2
,

(α29)j =
1
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+
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2
+

B7
2
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2
, (α30)j = − 1
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+
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2
+
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2
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2
.

Equations (51)–(57) are the system of linear algebraic equations. These systems of equations are solved by 
block tridiagonal elimination method.

To solve the system of ODEs Eqs. (24)–(27) with shooting method, an initial guess value must be needed, 
for the define new variables as v(0) = d1,w(0) = d2, p(0) = d3, q(0) = d4 and the numerical solution can be 
attained using IVPs by Runge–Kutta method of order 6. If the condition given  by29 are correct up to the given 
accuracy 10−6 then our procedure is correct otherwise we take another guess and perform the computation again.

Results and discussion
In Fig. 2 the variation of material parameter K1 is shown on velocity profile f ′(ξ) . It has been noticed that veloc-
ity of fluid rises with growing values of material parameter K1. As we increase material parameter the micro 
concentration of the fluid increased which alter the flow and as a result the boundary layer thickness enhances. 

(46)
(α11)jδfj+(α12)jδfj−1+(α13)jδuj+(α14)jδuj−1+(α15)jδgj+(α16)jδgj−1+(α17)jδvj+(α18)jδvj−1+(α19)jδpj+(α20)jδpj−1 = (r6)j− 1

2
,
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1

2
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(
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2
,
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(α21)jδfj+(α22)jδfj−1+(α23)jδuj+(α24)jδuj−1+(α25)jδθj+(α26)jδθj−1+(α27)jδvj+(α28)jδvj−1+(α29)jδqj+(α30)jδqj−1 = (r8)j− 1

2
.

(49)δf1 = 0, δu1 = 0, δg1 = 0, δθ1 = 0, δvJ = 0, δwJ = 0, δgJ = 0, δθ J = 0,

(50)(r1)j− 1
2
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2
,

(51)(r2)j− 1
2
= uj−1 − uj + hjvj− 1

2
,

(52)(r3)j− 1
2
= vj−1 − vj + hjwj− 1

2
,

(53)

(r4)j− 1
2
=−

{

(wj − wj−1)h
−1
j + A

1
wj− 1

2
+ A2vj− 1

2
+ A3uj− 1

2
+ A4(f w)j− 1

2
+ A5(f v)j− 1

2
+A6(f u)j− 1

2

+A7u
2

j− 1
2

+ A8(uv)j− 1
2
+ A9

(

pj − pj−1

)

hj + A10pj− 1
2

}

,

(54)(r5)j− 1
2
= gj−1 − gj + hjpj− 1

2
,

(55)(r6)j− 1
2
= −

{

(

pj − pj−1

)

hj + B1pj− 1
2

+ B2gj− 1
2
+ B3vj− 1

2
+ B4uj− 1

2
+ B5(fp)j− 1

2
+ B6(ug)j− 1

2

}

,

(56)(r7)j− 1
2
= θj−1 − θj + hjqj− 1

2
,

(57)

(r8)j− 1
2
= −

{

(qj − qj−1)hj + B
1
qj− 1

2
+ B7(f q)j− 1

2
+ B8(uθ)j− 1

2
+ B9v

2

j− 1
2

+ B10uvj− 1
2
+ B11u

2

j− 1
2

}

,
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Figure 3 is sketched to know the behavior of magnetic parameter M on velocity profile. This figure discloses that 
velocity profile declines for large estimation of magnetic parameter M. The magnetic force is a resistive quantity 
which works against the flow, as a result the velocity decreases as shown in Fig. 3. Figure 4 interprets the effect of 
radius of curvature δ on the fluid velocity. As large the radius of curvature parameter δ values, velocity decreases.

Material parameter K1 behavior is described through Fig. 5. It is inspected that microrotation velocity accel-
erates for large values of material parameter K1 . Figure 6 illustrates the behavior of microrotation profile with 
magnetic parameter M . It can be noticed that near the stretching surface the microrotation profile enhances, 
the profile overlaps far away from the sheet and then decreases as given in Fig. 6. Figure 7 represents the impact 
of radius of curvature δ parameter on the microrotation profile. The curvature parameter δ increases near the 
stretching sheet, opposite behavior is perceived as one moving farther from the stretching surface.

Characteristic of material parameter K1 on temperature profile θ(ξ) is shown in Fig. 8. It is observed the tem-
perature profile declines with rising values of material parameter K1 . The effect of increasing magnetic parameter 
M on temperature distribution is shown in Fig. 9. Here temperature profile increases as M is increased. Figure 10 
shows the temperature profile decreases with increment in radius of curvature parameter δ . The effects of viscous 
dissipation or Eckert number on temperature distribution is given in Fig. 11. It is noticed that increasing values 
of Eckert number Ec brings accelerating characteristics in temperature distribution and boundary layer thick-
ness. Figure 12 indicates how the presence of Prandtl number effects temperature profile. The thermal bound-
ary layer shows a diminishing trend as Prandtl number is increased. This takes place due to the fact, when the 
Prandtl number increases the thermal conduction of the medium decreases as a result the thermal boundary 
layer thickness declines.

To confirm the accuracy and validity of the employed numerical method a comparison of skin friction is 
made with those reported by Okechi et al.33 for K1 = 0,M = 0 as given in Table 1. Table 1 shows that present 
results agree well with the preceding data and this confirms that the numerical procedure adopted in the present 
work gives accurate results. Table 2 represents the behavior of skin friction against different pertinent parameter. 

Figure 2.  f ′(ξ) versus K1.

Figure 3.  f ′(ξ) versus M.
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Figure 4.  f ′(ξ) versus δ.

Figure 5.  g(ξ) versus K1.

Figure 6.  g(ξ) versus M.
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Figure 7.  g(ξ) versus δ.

Figure 8.  θ(ξ) versus K1.

Figure 9.  θ(ξ) versus M.
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Figure 10.  θ(ξ) versus δ.

Figure 11.  θ(ξ) versus Ec.

Figure 12.  θ(ξ) versus Pr.
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The values of Nusselt number at the curved surface for distinct emerging non-dimensional parameters in the 
governing equations are given in Table 3.

Conclusion
In this work we have numerically studied the boundary driven flow and the heat transfer characteristics over an 
exponential stretchable curved wall. Solutions were obtained numerically using the shooting method and Keller 
box method. In the light of present work, the important findings are given below.

Table 1.  Values of skin friction coefficient −Cfs and comparison with Okechi et al.33 for δ, when K1 = 0, and 
M = 0.

δ SM KBM Okechi et al.33

5 1.4198 1.4198 1.4196

10 1.3468 1.3468 1.3467

20 1.3135 1.3135 1.3135

30 1.3027 1.3027 1.3028

40 1.2975 1.2975 1.2975

50 1.2944 1.2944 1.2944

100 1.2881 1.2881 1.2881

200 1.2850 1.2850 1.2850

1000 1.2825 1.2825 1.2826

∞ 1.2818 1.2818 1.2818

Table 2.  Numerical computation of skin friction coefficient −Cfs and couple stress Cs  for different physical 
flow parameters.

K1 M δ

−Cfs Cs

SM KBM SM KBM

0.4 0.5 7 1.830404 1.830427 0.1663512 0.1663536

0.6 1.989029 1.989048 0.2313259 0.2313259

1.0 2.165557 2.165570 0.361153 0.361153

0.4 0.2 7 1.737532 1.737551 0.153462 0.153464

0.6 1.892846 1.892869 0.168982 0.168984

1.0 2.178558 2.178580 0.192836 0.192836

0.4 0.5 10 1.781235 1.781256 0.171027 0.171030

100 1.674426 1.674446 0.183156 0.183157

1000 1.663331 1.663312 0.184245 0.184245

Table 3.  Values of θ ′(0) for different physical flow parameters.

δ M Pr Ec K1 SM KBM

5 0.5 0.7 0.3 0.2 0.938958 0.938951

100 0.935618 0.935613

1000 0.925259 0.925259

7 0.2 0.7 0.3 0.2 0.969702 0.969696

0.6 0.922585 0.922581

0.849553 0.849543

7 0.5 1 0.3 0.2 1.114253 1.142527

1.5 1.433049 1.433040

2 1.677469 1.677457

7 0.5 0 0.6 0.2 0.812512 0.812500

0.8 0.730346 0.730330

1 0.648181 0.648159

0.2 0.935760 0.935756

0.4 0.959186 0.959184

0.4 0.977454 0.977745
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• The fluid velocity shows a declining behavior as magnetic parameter and radius of curvature increase.
• Increasing the material parameter results an enhancement in fluid velocity.
• As radius of curvature and magnetic parameter increase the micro-rotation profile rises from the start of the 

surface but opposite behavior is noticed when it is far away the surface.
• The increment in material parameter increases the micro-rotation profile.
• Temperature profile reduces with higher values of material parameter and Prandtl number whereas opposite 

behavior is observed for radius of curvature, magnetic parameter, and Eckert number.

The present work can be extended by taking entropy generation, moreover for other non-Newtonian fluids 
this work can be carry forward.
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