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A B S T R A C T   

Owing to the multidisciplinary significance and dynamic applications of nanoparticles, the 
research in areas of thermal and process engineering has been expanding every day. The nano-
materials with extraordinary thermal and physical properties are being studied to pose some 
astonishing contributions in various fields. The nanomaterials when taken with microorganisms 
in a solution for collective transport, referred as mix fluids, greatly improve the thermal efficiency 
during heat transfer phenomena. Usually, the mixed fluids particles have greater advantage of 
being controlled by some physical stimuli of light, gravity and density along with electrical and 
magnetic forces. The current study offers some innovative applications of induced magnetic field 
for the bio-convection pattern third grade nanofluid under the influence of extraordinary acti-
vation energy and non-uniform hear source/sink factors. The assumptions of stagnation points are 
considered under the influence of stretched. The nano-materials have been mixed with micro-
organism to prepare a mixed fluid in order to obtain more stability and directed transportation. 
The flow constraints for the thermal transport phenomenon have been explained by using 
convective boundary approach. The couple and nonlinear equations have been put forward to 
present the model and the solution has been derived using shooting algorithm technique. 
Moreover, the numerical and graphical outcomes from the study are presented using tables and 
figures. The improved profile of velocity is predicted against higher values of velocity ratio, 
Reynolds number and third grade fluid parameter. The induced magnetic field profile enhanced 
for reciprocal magnetic Prandtl number and magnetic parameter. The consideration of non- 
uniform heat source/sink is more effective to improve and control and thermal transportation 
process.   
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1. Introduction 

This century has been an era of scientific exploration of high efficiency, thermally active and exceptionally stable nanomaterials 
that are point of research these days. The nanomaterials when suspended in a solution have made an excellent contribution to the 
science of nuclear studies, heating and cooling of electro-mechanical devices, fission and fusion, thermal engineering and mass flow. 
Due to the extremely unique applications in science and engineering the nanoparticles have been selected to contribute towards more 
national energy sector in developing countries. When compared with base fluids like water and oils the nanomaterial suspended 
solutions have added advantages of high heat and mass transfer, increased thermophysical properties and improved stability. These 
parameter are the milestones that have underwritten vast applications of nanofluids in biotechnology, renewable energy, drug de-
livery, pharmaco-kinetics and all engineering disciplines including aviation and mechatronics. Choi [1] has been the pioneer who 
initially reported the properties of nanoparticle along with experimental support data. The improved heat transfer studies accom-
panying induced magnetic field were presented by Wakif et al. [2]. The investigation of improved parameters of Oldroyd-B nanofluid 
was performed by Khan et al. [3] under the influence of radiation via Prandtl approach. The stability of nanoparticles and hydro-
dynamic application of the nanofluids were exploited by Turkyilmazoglu [4]. The investigations conducted by Ibrahim [5] included 
the behavior of Maxwell nanofluid in features of uniform induced magnetic force. The thermal aspects of micropolar fluids through 
porous surface with induced magnetic field were investigated by Shehzad et al. [6]. Anisotropic slip studies for nanoparticles under the 
magnetic effect were reported by Nadeem et al. [7]. The explorations of Ikram et al. [8] were focused on enhancing thermal distri-
bution pattern of hybrid nanofluids. Hosseinzadeh et al. [9] reported an exclusive improvement in heat transfer for model of cross 
nanofluids in three dimensions. The analysis of shrinking/stretching conditions of spongy surface immersed in hybrid nano-suspension 
was predicted by Khan and investigators [10]. The thermal model proposed by Salehi et al. [11] pronounced the role of variable 
magnetic forces on nanofluid flow through parallel plates. The viscoelastic nanofluid thermal effectiveness for Darcy-Forchheimer over 
a periodically moving surface was directed by Li et al. [12]. The investigations of a exponentially accelerated curved plate immersed in 
nanofluid were led by Wahid et al. [13]. Gowda et al. [14] presented the inspired features of magnetic dipole for the Stefan blowing 
flow of ferromagnetic nanoparticles codified by stretching surface. Kumar et al. [15] inspected the aspects of thermodiffusion pro-
spective while addressing the flow of ferromagnetic nanofluid. Gowda et al. [16] used the modified relations of Cattaneo-Christov to 
predict the fluctuation in heat and mass phenomenon for Sutterby nanofluid. The rotating flow analysis for hybrid nanofluid with 
magnetic force impact was characterized by Reddy et al. [17]. Yusuf et al. [18] determined the entropy generation consequences for 
the Williamson nanofluid flow over inclined surface. Acharya [19] successfully implemented the spectral quasi numerical scheme for 
present the solution of nanofluidic transport problem with multiple convective constraints. Acharya and Mabood [20] determined the 
comprehensive thermal change in the thermal transport of base fluid by using the Fe3O4–graphene hybrid nanoparticles. The hybrid 
nanofluid flow due to texture in presence of radiative phenomenon has been described by Acharya et al. [21]. 

The themes of bioconvection are related with microscopic suspending particles flow that accompany heat and mass transfer at large 
and uplift base fluid properties. The density of nanofluid is key parameter that influences the bioconvection patterns even when 
microorganisms are mixed. The density stratification leads the movement of suspended fluid particles (nanoparticles/microbes) in a 
way that sometimes the particles move anti gravimetrically due to high density lower layers. These density strata determine the 
stability of the fluid particles and the net gyrotactic bioconvection scheme. Bioconvection has been found to have many applications in 
the fields of renewable energy where biofuels production reactors, solar panel plates, microbial fuel cell and syn-gas technology. The 
biotechnology science has also been benefitted by bioconvection studies that have revolutionized the targeted drug delivery, biosensor 
devices, integrated metabolism, nanomedicine, nano-catalysis, pyrolysis and anaerobic digestion. Engineering and geology has also 
been benefitted by bioconvection studies with its applications in microsystems, mining and drilling, polymer science, robotics, oil 
extraction and refineries. The bioconvection studies of nanoparticles as solution were performed by Kuznetsov [22,23]. The constraints 
of blowing features and slip were investigated by Uddin et al. [24] with a special focus on variable buoyant forces. Imran et al. [25] 
addressed the bioconvection applications for nanofluid flow under the influence of magnetic dipole. Acharya et al. [26] presented the 
effects of solar radiation over nanofluid bioconvection. The exploration of Erying-Powell nanofluid flow with slip effects and the 
numerical estimation was done by Anas et al. [27]. The analysis conducted by Khan et al. [28] reported the problems that were posed 
in by thixotropic fluids of mixed nature. Acharya et al. [29] exploited the properties of chemically reactive material and studied the slip 
effects and squeezing bioconvection pattern. Khan et al. [30] investigated the activation energy features of micropolar nanofluid along 
with gyrotactic microorganisms. An off centered moving disk submerged in micropolar nanofluid with extraordinary thermal assets 
was studied by Song et al. [31]. 

The activation energy is another novel research topic for scientists. The basic idea and definition activation energy was directed in 
1889 by Arrrehinius. Activation energy predicts the supplied energy amount to the reactants in any chemical process for initialing the 
process. The kinetic energy along with potential energy assigned to the molecules to break the bonding. The applications of activation 
energy include industries of oil storage, oil suspensions, geothermal systems and hydrodynamics [32–35]. 

The literature that has been reviewed spans the pioneer to advanced research in bioconvection studies. This theoretical commu-
nication aims to present the contribution of induced magnetic impact for bio-convective third grade nanofluid flow in presence of 
activation energy. The features of non-uniform heat source/sink are also attributed to suggest the thermal applications. It is remarked 
that much attention has been paid by researchers for the bioconvection flow of nanoparticles under different flow situations. However, 
the applications of bioconvection phenomenon for third grade non-Newtonian fluid under the inspired features of induced magnetic 
force have not been investigated yet. The choice of third grade fluid is interesting as this model presents the shear thinning and shear 
thickening rheological features more effectively [36,37]. The novel importance of induced magnetic impact regarding the 
bio-convective transport is visualized in solar energy and thermal engineering like extrusion processes, heat exchangers, energy 
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production, cooling of microchips, nuclear systems, trnapsortation processes etc. Refs [38–41]. represents different flow aspects over a 
stretched surfaces. 

2. Flow model 

The study considered the flow of third grade nanoparticles under the influence of strong magnetic field and stagnation point 
analysis for 2-D flow. Stability of nanoparticles is confirmed by examination of nanofluid in presence of microorganisms. The linear 
change in fluid particle movement is observed at surface y = 0. The model development was performed by assuming steady flow of 
nanofluid while following Cartesian coordinates. The representation of plate velocity over the moving sheet and free stream regime is 
respectively represented as u = ax and u = bx, where a and b are representatives of stretching velocity coefficients. Convective mass 
flux and constraints are employed to analyze convective transport. The magnetic field induction has been take as normal to the flow 
surface. H1 and H2 are the respective representations of magnetic components along horizontal and normal surface. Its noteworthy 
remarked that induced magnetic component H2 is along normal direction vanishes near the flow surface while parallel component H1 
asymptotically close to H0. The velocity components along normal and horizontal space is defined by v and u , respectively. The free 
stream zone concentration, motile density and temperature are denoted with c∞, n∞ and T∞, respectively. Following such constraints, 
the modeled equations are [5, 36, 37]: 

∂u
∂x

+
∂v
∂y

= 0, (1)  

∂H1

∂x
+

∂H2

∂y
= 0, (2)  

u
∂u
∂x

+ v
∂u
∂y

= ν ∂2u
∂y2 +

α*
1

ρf

⎡

⎢
⎢
⎢
⎢
⎣

v
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∂x

∂2u
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+u
∂3u
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∂u
∂y

∂2v
∂y2

⎤

⎥
⎥
⎥
⎥
⎦
+

6β3
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(
∂u
∂y

)2∂2u
∂y2 −

σB2
0

ρf
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∂u∞

∂x
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dUe

dx

−
μ
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∂He

∂x
+

μ
4πρf

(

H1
∂H1

∂x
+H2

∂H1

∂y

)

−

⎧
⎨

⎩

(
ρp − ρf

)
(c − c∞)g

+g(1 − c∞)gαρf (T − T∞)

− (n − n∞)∇ργg

⎫
⎬

⎭
,

(3)  

u
∂H1

∂x
+ v

∂H2

∂y
= H1

∂u
∂x

+ H2
∂u
∂y

+ ue
∂2H1

∂x2 , (4)  

u
∂T
∂x

+ v
∂T
∂y

=
kf

(ρc)f

∂2T
∂y2 + τT

[

DT
∂C
∂y

∂T
∂y

+
DT

T∞

(
∂T
∂y

)2]

+
Q

(ρc)f
,

where non-uniform heat source/sink factor Q is: 

Q=
KUw

xν
(
A1
(
Tf − T∞

)
f ′

+B1(T − T∞)
)
, (5)  

u
∂C
∂x

+ v
∂C
∂y

+Kr2(C − C∞)

(
T

T∞

)m

exp
(
− Ea

kaT

)

=
DT

T∞

∂2T
∂y2 + DB

∂2C
∂y2 , (6)  

u
∂N
∂x

+ v
∂N
∂y

+
bmwm

(cw − c∞)

∂
∂y

(

N
∂C
∂y

)

=Dm
∂2N
∂y2 , (7) 

The boundary conditions are [5]: 

u= ax, v= 0,
∂H1

∂y
=H2 = 0, − k

∂T
∂y

= hf
(
Tf − T

)
, C=Cw,N =Nw at y= 0,

}

(8)  

u → u∞ = bx,
∂u
∂y

→ 0, H1 = He(x) → H0(x),T → T∞, C → C∞, N → N∞ at y → ∞. (9)  

where α*
1 and β3 symbolized the material constants for third grade nanofluid. The remaining are physical quantities are density ρf , 

volume expansion coefficient α, electric conductivity σ, diffusion coefficient DB , x− magnetic component edge at boundary He, 
thermophoretic coefficient DT, heat capacity nanofluid ratio τw, Boltzmann constant κ*, rate constant m, microorganisms diffusion Dm, 
Stefan Boltzmann constant σ* , activation energy Ea , nanoparticles density ρp, gravity g, cell densities difference ∇ρ , reaction constant 
Kr, chemotaxis constant bm, average volume of microorganism γ and swimming cells speed wm. 

The transformations are [5]: 
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v = −
̅̅̅̅̅
aν

√
f (η),H2 = − H0

̅̅̅
ν
a

√

s(η), η =

̅̅̅
a
ν

√

y, u = axf ′

(η),

φ(η) = C − C∞

Cw − C∞
, θ(η) = T − T∞

Tf − T∞
, χ(η) = N − N∞

Nw − N∞
.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (10) 

Utilizing these transformations in governing equations results: 

f ′′′

− f ′ 2
+ ff ′′ +B2 + ε

(
l′

2
− ll′′ − 1

)
+α

[
2f ′ f ′′′

− ff ′′ − f ′′2
]
+ 6βRef ′′2f ′′′

+Gr(θ − Nrφ − Rbχ)= 0,
(11)  

A(l′′′ − lf ′′ + fl′′) = 0, (12)  

1
Pr

θ′′ + f θ
′

+Nbθ
′

φ
′

+Nt(θ
′

)
2
+A1f

′

+B1θ= 0, (13)  

φ′′ +

(
Nt
Nb

)

θ′′ − Scσc(1 + ωθ)m exp
(

−
E

1 + ωθ

)

φ+ Scf φ′

= 0, (14)  

χ′′ − Pe{(σm + χ)φ′′ + χ′ φ′

}+ Lbf χ ′

= 0. (15)  

with boundary conditions: 

f (0)= 0, f ′

(0)= 1, l(0)= l′′(0)= 0, θ
′

(0)= − Bi[1 − θ(0)],φ(0)= 1, χ(0)= 1, (16)  

f ′

(∞)→ B, f ′′(∞) → 0, l
′

(∞) → 1, θ(∞) → 1,φ(∞) → 1, χ(∞) → 1. (17)  

with velocity ratio (B), material parameters (α,β), Reynolds number (Re), mixed convection parameter (Gr), buoyancy ratio constant 
(Nr) , Rayleigh number (Rb), reciprocal magnetic Prandtl number (A), Prandtl number (Pr), magnetic parameter (ε), Brownian con-
stant (Nb), activation energy (E), thermophoresis constant (Nt), Lewis number (Le), bio-convective Lewis number (Lb), Peclet number 
(Pe) and motile difference constant (σm).

B=
b
a
,α= aα*

1

/
μ, β= β3a2 / μ,Re= ax2 / ν,Nr =

∇ρm(Cw − C∞)

αρf (1 − c∞)
(
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(
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a

)2

,A=
μe
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/
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)
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ν
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DB
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T∞αm
,Lb=

αm

Dm
,

Pe=
bmwm

Dm
, σm =

n∞

(nw − n∞)

The heat, mass and motile density rates are evaluated with help of following quantities: 

(Rex)
− 1/2Nu = − θ

′

(0),
(Rex)

− 1/2Sh = − φ
′

(0), (Rex)
− 1/2Nn = − χ ′

(0).

}

(18)  

3. Numerical scheme 

The solution process is followed with implementations of shooting numerical method by using the MATLAB software. The sug-
gested employed transformations to develop the problem in terms if first order system is: 

f = r1, f ′

= r2, f ′′ = r3, f ′′′

= r4, f ′′ = r4
′

, l = r5, l
′

= r6, l′′ = r7, l
′′′

= r7
′

,

θ = r8, θ
′

= r9, θ′′ = r9
′

, φ = r10, φ′

= r11,φ′′ = r12
′

, χ = r13, χ ′

= r14, χ′′ = r14
′

.

}

(19) 

The transformed form of system is: 

r4
′

=

r4 − r2
2 + r1r3 + B2 + ε

(
r6

2 − r5r7 − 1
)
+ α1

[
2r1r4 − r3

2]+ 6βRer3
2r4

+Gr(r8 − (Nr)r10 − Rbr13)

α1r1
, (20)  

r7
′

=
r5r3 + r1r7

A
, (21)  

r9
′

= − Pr
(
r1r9 +Nbr9r11 +Nt(r9)

2
+A1r2 +B1r8

)
, (22)  

r11
′

= − Scq1q11 −
Nt
Nb

r8
′

+ Scσ**(1 + δr7)
nr11exp

(
− E

1 + δr11

)

, (23) 
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r14
′

= r1r14 − Lbr1r9 + Pe(r13 +ϖ)r12. (24)  

With 

r1(0)= 0, r2(0)= 1, r5(0)= r7(0)= 0, r9(0)= − Bi[1 − r8(0)], r11(0)= 1, r13(0)= 1, (25)  

r2(∞)→ B, r3(∞) → 0, r6(∞) → 1, r8(∞) → 1, r11(∞) → 1, r13(∞) → 1. (26) 

By using the iterative process, the results are inspected with accuracy of 10− 7. 

4. Discussion 

The numerical simulated data for parameters is visualized physically in this section. Fig. 1(a) is a representation of variation in 
velocity f ′ due to changing third grade parameters α and β. The escalating change in both α and β resulted the inclining velocity profile. 
The explanation in Fig. 1(b) represents an increasing evolution for f ′ for higher velocity ratio B and magnetic parameter ε. The 
explanation of buoyant forces is related with mixed convection parameters. The results indicated that maximum change in f ′ is due to 
higher variation of ε and B. Fig. 2(a) observed the physical appliances of bioconvection Rayleigh number Rb and third grade fluid α 
parameter induced magnetic field l′ . A leading enhancement in l′ is noted for Rb. This increasing trend is physically justified with 
involvement of bioconvection buoyancy forces. However, a suppressed nature of l′ is observed with distinct increasing values of α. The 
increasing interpretation of induced magnetic profile is visualized against reciprocal magnetic Prandtl constant A and magnetic 
constant ε in Fig. 2(b). 

Fig. 3(a) is an illustrative of effects on temperature profile θ by variation in material parameter α and Reynolds number Re. The 
value of θ have been found to show a decrement when α and Re are maximum. The relationships and effects of buoyancy parameter Nr 
and magnetic parameter ∈ on θ are drafted using Fig. 3(b). The value of θ is found climbing when growing buoyancy parameter Nr. The 
insight physical appliances for this profile is related to the bioconvection buoyancy forces due to Nr. With increasing change in 
magnetic parameter ∈, θ also enhanced. Fig. 3(d) clarifies the relationship of A1 and B1 on θ. It can been seen that increasing values of 
both parameters the boost the temperature profile. Fig. 3(c) depicts the impact of thermophoresis parameter Nt and Brownian motion 
constant Nb on temperature θ. A increasing contribution in nanofluid temperature is observed for Nt and Nb. The thermophoretic 
phenomenon involves the movement of heat nanoparticles from an area of higher temperature to lower on the surface that help to lift 
the net temperature of a system. 

The enrolment of buoyancy parameter Nr and reciprocal magnetic Prandtl A on φ are presented in Fig. 4(a). A hint of decrease is 
observed for φ when A attains the numerical output. However, a boosted profile of φ is inspected for Nr. This boosted nature of 
concentration is attributed to the presence of buoyancy forces due to bioconvection. The nanoparticles concentration presents a 
diminishing change due to leading values of Nb and Reynolds number Re (see Fig. 4(b)). Fig. 4(c) presents how nanofluid concentration 
φ is affected by varying activation energy E and thermophoresis constant Nt. The higher values of both parameters were found 
associated with rapid rise in φ. The increasing change in concentration due to E is justified as activation effectively enhanced the 
chemical reaction process. Moreover, the concentration profile also rises against Nt due to the thermophoresis phenomenon. 

The physical explanation presented in Fig. 5(a) notified the change in microorganisms profile χ due to bio-convective Lewis 
constant Lb and Peclet parameter Pe. The declining profile of χ is inspected for Pe which is justified due to inverse relations of Peclet 
constant with motile diffusivity. Moreover, χ also declined with Lb. Fig. 5(b) reports the leading Prandtl number A and buoyancy ratio 
constant Nr on microorganism’s profile. An increasing and reducing change in χ has been observed for Nr and A, respectively. 

The numerical change due to parameters for − f ′′(0) is noticed in Table 1. The increasing numerical values due to α and Re are 
noticed. The flow parameters like ε, A and Rb presents a contradictory trend. Table 2 evaluates the numerical evaluation of − θ

′

(0) , −

Fig. 1. Velocity profile for (a) α and β (b) ε and B.

Y.-J. Xu et al.                                                                                                                                                                                                           



Case Studies in Thermal Engineering 27 (2021) 101305

6

φ′

(0) and − χ ′

(0) for parameters. The gradually rise in physical quantities is noted for δ Gr and Pr. 

5. Conclusions 

The applications of induced magnetic force, non-uniform heat source/sink and activation energy are theoretically inspected for 
third grade nanofluid. The numerical outcomes are obtained via shooting technique. The novel outcomes are: 

Fig. 2. Induced magnetic field for (a) α and Rb (b) ε and A.

Fig. 3. Temperature profile for (a) α and Re (b) ε and Nr, (d) A1 and B1 (c) Nt and Nb.
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❖ The peak change in velocity is observed for third grade fluid parameter and velocity ratio constant.  
❖ In increasing effects of fluid parameter is obtained for induced magnetic field profile.  
❖ The reciprocal magnetic Prandtl number and magnetic parameter enhanced the induced magnetic field profile.  
❖ The third grade fluid parameter and Reynolds number sufficiently improves the temperature profile.  
❖ The valuable contribution of uniform heat source phenomenon is observed and result an increasing change in heat transfer rate. 

Fig. 4. Concentration profile for (a) Nr and A (b) Re and Nb and (c) Nt and E.

Fig. 5. Microorganisms profile for (a) Lb and Pe (b) Nr and A.
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❖ The concentration shows declining nature with Reynolds number and reciprocal magnetic Prandtl number.  
❖ The microorganism profile enhanced when reciprocal magnetic Prandtl number is maximum.  
❖ The current flow model results can be further modified and extended for different non-Newtonian fluids like Jeffrey fluid, Oldroyd- 

B fluid, Casson fluid, Burgers fluid, couple stress fluid etc. Moreover, this analysis will become more interesting for consideration of 
entropy generation features. 
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Table 1 
Numerical change in − f ′′(0) for parameters.  

α  Re  ε  A  Gr  Rb  − f ′′(0)

0.1 
0.5 
0.7 

0.2 0.4 0.2 0.2 0.4 0.44467 
0.47853 
0.53175  

0.3 
0.7 
0.9     

0.45785 
0.47587 
0.49602   

0.01 
0.03 
0.05 

0.4 0.2 0.4 0.43320 
0.42741 
0.41857   

0.2 0.3 
0.7 
1.1   

0.45259 
0.44748 
0.44504     

0.1 
0.5 
0.7  

0.47408 
0.46377 
0.45149      

0.1 
0.5 
0.9 

0.44584 
0.38305 
0.366711  

Table 2 
Numerical change in − θ

′

(0) − φ′

(0) and − χ ′

(0).  

δ  A  Gr  Rb  Pr  − θ
′

(0) − φ′

(0) − χ′

(0)

0.01 
0.03 
0.05 

0.2 0.4 0.2 0.8 0.38748 
0.35526 
0.31325 

0.29748 
0.27285 
0.255965 

0.4567 
0.43659 
0.39238 

0.2 0.3 
0.7 
1.1    

0.41748 
0.37629 
0.32674 

0.315748 
0.265128 
0.2473858 

0.410478 
0.38291 
0.35759   

0.1 
0.5 
0.7   

0.39525 
0.35774 
0.32085 

0.357784 
0.328658 
0.287857 

0.44917 
0.42369 
0.39851    

0.1 
0.5 
0.9  

0.44529 
0.42737 
0.38698 

0.414748 
0.37298 
0.315368 

0.48965 
0.45857 
0.42748     

0.1 
0.7 
1.3 

0.374299 
0.317687 
0.260756 

0.44452 
0.37147 
0.284857 

0.41775 
0.35405 
0.31754  
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