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Abstract: This research communication reports a computational study of mixed convection 

towards a stretched surface with a Carreau-Yasuda model (non-Newtonian fluid). A Carreau-

Yasuda model, acceptable for numerous non-Newtonian models, is utilized to illustrate the 

behavior of both shear thinking and thinning liquids. The energy and concentration equations are 

developed using the concept of law of conservations of energy and mass in the presence of thermal 

radiation, Soret and Dufour effects, viscous dissipation and activation energy. Total entropy rate 

depends on four different types of irreversibilities, i.e., thermal, Joule heating, fluid friction, mass 

and calculated through second law of thermodynamics. Convective boundary conditions is 

imposed at the boundary for both heat and mass transport. The governing equations are 

transformed into ordinary ones via appropriate similarity transformations and numerical results are 

obtained through Built-in-Shooting method. The pertinent flow parameters for the problem are 

mixed convection parameter, Soret and Dufour parameters and activation parameter. The impact 

to the constitutive non-Newtonian fluid (Carreau-Yasuda model) on the velocity, temperature, 
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concentration, entropy generation rate, skin friction and heat transfer rate is discussed in detail. 

The obtained results are compared with previous published research articles and good agreement 

is found. The results reveal that temperature increases against higher values of Dufour parameters. 

Keywords: Carreau Yasuda fluid; Convective conditions; Soret and Dufour effects; Entropy 

generation; Mixed convection; Activation energy 

1:  Introduction 

The obliged capitalization of impressively organized fluids has persuaded remarkable 

attentiveness of present research community. In the recent few couple of years various examination 

on these multifaceted natured liquid have been initiated because of their significant and valuable 

pertinence in many procedures i.e., food emulsions, friction reduction, biopolymer systems, 

cooling by surfactants and many others [1-3]. Therefore, researchers and investigators have 

recommended the essentialness of liquids in various procedures. But with the improvement in time 

and change in different mechanical and industrial technological processes are happing so it is 

exceptionally significant to create such liquids which adapt up to them. Therefore, experts of fluid 

dynamics have proposed numerous non-Newtonian fluid models in this regards after analyzing the 

behavior and demand of required progressions. To anticipate the rheological attributes of shear 

thinning liquids which has utilize in manufacturing of multiple emulsions and polymerization, 

various models for example Ellis model [4], Ostwald-de-Waele model [5], Williamson model [6], 

Cross model [7], Carreau-Yasuda model [8] and Carreau model [9] are proposed. Among the 

above fluid models, the Carreau-Yasuda model has obtained inescapable consideration of 

researchers and investigators because of its adequate behavior for the narrative of shear thinning 

liquid. Carreau-Yasuda model is the generalized form of power law model. The power law model 

depends on a two parameter i.e., k  and n  whereas Carreau-Yasuda model is depends on five 
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parameter model i.e., ( )0 , , , , .n a    Andrade [10] worked on Kolmogorov dissipative scales and 

skin friction equation for turbulent pipes flow using Carreau-Yasuda fluid model In this research, 

he discussed the turbulent flow behavior of Carreau-Yasuda model and skin friction equation is 

derived assuming a logarithmic impact of turbulent velocity towards the near wall flow out of the 

viscous sub layer. They obtained results are also compared experimentally with methyl hydroxil 

cellulose solutions and found good agreement. Some important and influential studies in regards 

of non-Newtonian materials can be seen in Refs. [11-17]. 

Stretching surfaces play an important role in industrial applications such as fiber glass production, 

wire drawing and hot rolling etc. Sakiadis [18] studied the boundary layer assumptions on a solid 

sheet surface moving with uniform speed. In this study, he concentrate on the boundary layer flow 

of continuous solid surfaces and basic differential and integral momentum expressions of boundary 

layer theory are derived for these surfaces. Furthermore, the derived differential and integral 

momentum expressions are solved for both laminar and turbulent flow. Crane [19] pioneered the 

work by presenting exact solution for two dimensional steady stretching flow problems. Many 

authors extended the work of Crane by studying different aspects of the stretching flow problem 

[20-21]. Rashid et al. [22] scrutinized radiated flow of non-Newtonian fluid (thixotropic fluid) 

with chemical reaction towards a stretched surface. They discussed the flow behavior over a 

stretched surface and generated by linear stretching velocity. The derived flow expressions are 

solved analytically through semi analytical method (Optimal Homotopy Analysis Method 

(OHAM)). Total residual errors for the velocity, temperature and concentration equations are 

calculated. Hsiao [23] analyzed incompressible, steady electrical conducting dissipative free 

convective flow of Maxwell fluid near a stagnation point towards a stretched surface. The 

governing flow expressions are first converted into ordinary ones and then tackled by an improved 
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numerical finite difference method. Further attempts in the boundary layer area with stretching 

sheet phenomenon can be observed in Refs. [24-32]. 

The efficient consumption of energy and resources have highly motivated the researchers to 

improve he efficiencies in industrial processes. Analysis of heat transfer is considered as the key 

factor in consumption of energy. Entropy optimization with different types of non-Newtonian 

fluids is an important tool for getting maximum heat transfer rate. New advancements and better 

efficiencies in industries and engineering processes have been achieved by using entropy 

generation. Bejan started the work on entropy minimization [33]. This concept is mainly based on 

2nd law of thermodynamics. Recently much attempts have been done in this area taking different 

geometries. Second law of thermodynamics is used by Rashidi et al. [34] considering 

incompressible flow of electrically conducting fluid over a rotating disk with magnetic field 

effects. Electrically conducting fluid is considered and the analysis is carried out by a stretched 

surface of disk. They claim that the considered flow has a applications in thermal conversion 

mechanisms for nuclear propulsion space vehicles and MHD energy generators. Through 

implementation of second of thermodynamics total entropy rate is calculated and the results are 

compared with published articles in the literatures and found good agreement with them. Further, 

Rashidi et al. [35], Malvandi et al. [36] and Soraya and Salah [37] worked on entropy optimized 

MHD stretched flow of viscous material for both heat and mass transport in the presence of 

magnetohydrodynamic, nanofluid, slip effects, porosity and variable fluid properties. 

In this work, entropy generation rate is studied in flow of non-Newtonian fluid (Carreau-Yasuda 

fluid) towards a stretched surface with mixed convection. Both energy and concentration equations 

are developed in the presence of thermal radiation, Soret and Dufour effects, viscous dissipation, 

chemical reaction and activation energy. Total entropy rate is discussed. Convective boundary 
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conditions is imposed at the boundary for both heat and mass transport. The impact of influential 

flow parameters are discussed on the velocity, concentration, temperature, skin friction, entropy 

generation rate and Nusselt number. The governing equations are solved numerically via Built-in-

Shooting method and results are compared with other techniques and found very good analysis 

with them. 

2:  Theoretical formulation 

2.1:  Problem statement 

Here we considered two-dimensional steady-incompressible mixed convective flow of Carreau-

Yasuda fluid towards a stretched surface. The flow is generated due to linear stretching velocity 

i.e., ,u ax=  where a  denotes the stretching rate or dimensional constant. Thermal radiation, Soret 

and Dufour effects, viscous dissipation, activation energy and chemical reaction effects are utilized 

in the mathematical modeling of energy and concentration equations. At the boundary of stretched 

surface u ax=  highlights the stretched velocity in x−  direction, 0v =  denotes there is no 

suction/injection at the boundary, ( ) ,T
fy

k h T T


− = −  ( )C
c cy

D h C C


− = −  represent the 

convective conditions for both heat and mass transport, where k  indicates the thermal 

conductivity, fh  the heat transfer coefficient, T  the temperature, ch  the mass transfer coefficient, 

T  the ambient temperature, C  the concentration, cD  the mass diffusion and C  the ambient 

concentration. The schematic geometry of the problem is illustrated in Fig. 1. In 1972, the 

rheological expressions of Carreau fluid is initially derived by Carreau [16] and broadly has been 

utilized up to date. The constitutive expression of [16] for incompressible flow is addressed as 

( )2 ,D   =           (1) 

where ( )  
 is defined as 
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In Eq. (2),    indicates the shear rate and addressed as 

2 : .D D   =           (3) 

The model [16] is further improved in 1979 by Yasuda [17]: 

( ) ( ) ( )( )
1
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−

 

 

 
= + − +  
 

       (4) 

Note that,   indicates the viscosity at infinite shear rate, 
0  viscosity at zero shear rate,   stands 

for time constant and n  the power law index. It is also note that the above model predicts the 

Newtonian behavior, pseudoplastic fluid and dilatant fluid respectively for 1,n =  1n   and 1.n   

Also, a special case i.e., Newtonian fluid can be achieved by letting 1n =  or 0. =  

2.2:  Dimensional equations 

The dimensional equations i.e., the continuity, momentum, energy and concentration in the 

presence of applied flow assumptions are defined as [8, 38, 39, 40]: 
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with 

( ) ( ),  0,  ,     at   0,

0,  ,     when    .

T C
f c cy y

u ax v k h T T D h C C y

u T T C C y

 
  

 

= = − = − − = − = 


→ → → → 
   (9) 

Note that, Eq. (5) is the continuity equation which physical means that the influx is always equal 

to the outflux in the absence of any source/sink, Eq. (6) is the momentum equation which physical 

means that the total momentum of the body always remain conserved, where first term of the L. 

H. S. represents the inertial forces, the first term of R. H. S. represents the viscous forces, the 

second term is due to fluid model and the third term is due to the mixed convection, Eq. (7) is the 

energy equation which physical means that the total energy of the body remain conserved, where 

the first term of the L. H. S. indicates the internal energy, the first term of the R. H. S. is due to the 

conduction, the second term is due to the dissipative energy, the third term is due to the radiative 

heat flux and the last term is due to the Dufour effect, Eq. (8) is the law of conservation of mass 

which physically means the total mass of the mass is always conversed, where the first term of the 

L. H. S. and R. H. S. is due to the Fick's first law, the second term is due to the Soret effect, the 

third term is due to the chemical reaction and activation energy. In Eq. (8), the surface of the 

stretching sheet is represented at 0,y =  i.e., 0y =  highlights the stretched surface of sheet and 

y →  highlights the surface away from the stretched surface. 

In the above expressions, ,u v  indicates the velocity components in x−  and y−  respectively,   

the kinematic viscosity, g  the gravity acceleration, ,t c   the thermal and concentration 

expansions coefficients,   the density, pc  the specific heat, k  the thermal conductivity, 
0  the 

dynamic viscosity,    the Stefan-Boltzman constant, rk  the reaction rate, k   mean absorption 
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coefficient, m  the fitted rate constant, 
aE  the coefficient of activation energy and 

58.61 10 /eV K −=   the Boltzman constant porosity rate, Tk  the thermal mean temperature, sc  

the concentration susceptibility and mT  the fluid mean temperature. 

Let us consider the following appropriate transformations  

( ) ( ) ( ),   ( ),  ,  ,   .
w w

T T C Ca
y u axf v a f

T T C C
       


 

 

− −
= = = − = =

− −
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where ( )3aWe x


=   denotes the Weissenberg number, 
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parameter, ( )2
c

c

h

D a
B =  the solutal Biot number, ( )

cD
Sc =  the Schmidt number and ( )wT T

T
 



−
=  

the temperature ratio parameter. 

3:  Modeling of entropy 

The volumetric entropy equation for the Carreau-Yasuda fluid model in the presence of radiative 

heat flux, viscous dissipation and concentration is defined as 
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After implementing the Eq. (10), the dimensionless form is 

( ) ( ) ( )2 2 2 2 22
1

1
' ' ,

d d

G

Ln
N R Br f We f f Brf L

d


     



   − 
 = + + + + + + 

 
  (16) 

where ( )2 ,wC C
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=  respectively denote the 

concentration ratio parameter, diffusion parameter, Brinkman number and entropy generation rate. 

The Bejan number is addressed as 

Heat transfer irreversibility+Mass transfer irreversibility
,

Total entropy
Be =     (17) 

( ) 22 2'
,

L

G

R L
Be

N



     + + +
=         (18) 

 

4:  Physical quantities 

The skin friction coefficient and Nusselt number for the Carreau-Yasuda fluid is addressed as 
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where w  and 
wq  respectively highlight the shear stress and heat flux and is defined as 
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The dimensionless form of skin drag force and Nusselt number are expressed as 

( ) ( ) ( ) ( )
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5:  Numerical solution 

Here we consider steady, incompressible, two-dimensional mixed convective entropy optimized 

flow of Carreau-Yasuda fluid with Soret and Dufour effects towards a stretched surface of sheet. 

The nonlinear flow expression is first altered to ordinary differential equations through appropriate 

similarity transformation. The final system of ordinary ones is further altered into first order ODEs 

by introducing new variables and then tackled by Built-in-Shooting technique. The first order 

ordinary differential equations are 
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After implementing the above equation, the dimensionless Eqs. (11-13) with boundary conditions 

(14) take the form 
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Numerical solutions of Eq. (23) with boundary condition (24) are solved through Built-in-Shooting 

method and the results are compared with published ones and finds very good agreement with 

them. 

6:  Results and discussion 

This section is fully devoted to analyze the behavior of embedded parameters against velocity 

( )( ) ,f   temperature ( )( ) ,   concentration ( )( ) ,   entropy generation ( )( )GN   and Bejan 

number ( )( )Be   (see Figs. (1-16)). 

Figs. (1-4) are sketched for behavior of velocity profile against Weissenberg number ( ) ,We  

magnetic parameter ( )1 ,  mixed convection parameter ( )  and buoyancy ratio parameter ( )1 .N  

Fig. 1 reveals the influence of ( )We  against velocity field. Here velocity of the fluid is shown to 

be increasing for higher values ( ).We  By definition of ( )We  we can see that viscosity is inversely 

related to it. So with increase in the values of ( )We  decays the viscosity (internal resistance to 

flow) of the fluid. Therefore, we can conclude that for higher ( )0,0.7,1.4,2.1,2.8We =  motion of 

the fluid rises. Fig. 2 is to show the impact of magnetic parameter against ( )( ).f   Here we see 



2021 391(2 )

81

that motion of the fluid slows down with increase in ( )1 .  Magnetic parameter is increasing 

function of Lorentz force (resistive force). Due to increase in resistive force fluid particles slows 

down and ( )( )f   decreases. Fig. 3 deals with mixed convection impact on ( )( ).f   Velocity of 

the fluid enhances for greater values of .  Since mixed convection parameter is ratio of buoyancy 

to viscous forces. With increase in values of ( )  buoyancy force rises due to which ( )( )f   

increases. Impact of ratio of buoyancy forces parameter ( )1N  on velocity field is shown in Fig. 4. 

Here ( )( )f   enhances for rising values of ( )1 0,0.7,1.4,2.1,2.8 .N =  Fig. 5 tells the impact of 

Prandtl number ( )Pr  against temperature field ( )( ).   Here temperature of the fluid decays for 

higher values of Prandtl number ( )Pr .  Prandtl number is ratio between momentum diffusivity to 

thermal diffusivity. With increase in ( )Pr  thermal diffusivity decays due to which temperature of 

the fluid reduces. Fig. 6 describe the trend of ( )( )   against Eckert number ( ).Ec  Total internal 

energy of the system enhances with increase in ( )Ec  due to which ( )( )   rises. Figs. 7 and 8 

show the behavior of Dufour number ( )fD  and thermal Biot number ( )1B  against temperature 

field ( )( ).   There is increase in ( )( )   for higher values of ( )fD  and ( )1 .B  Mass concentration 

gradient in energy field is responsible for Dufour effect because there is coupled effect of 

irreversible process. Due to which energy flux of the system enhances. Therefore, it increases the 

( )( )   of the flow system (See Fig. 7). Fig. 9 shows the impact of Lewis number against 

concentration field and it is witnessed that concentration of the fluid is decreasing. With increasing 

( )Le  mass diffusivity decreases due to which mass concentration also decays. Fig. 10 is 

constructed to analyze the behavior of ( )Sr  via ( )( ).   Here concentration of the fluid enhances 
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against Soret number. Due to impact of irreversible process temperature gradient in the 

concentration field Soret effect generates. It has the capability to enhance the concentration flux 

of the flow system. Therefore, we can conclude that due to this concentration of the fluid enhances. 

Figs. 11 and 12 explain the trend of ( )( )   against activation energy parameter and solutal Biot 

number. ( )( )   is increasing function of both parameters. Increasing activation energy parameter 

with less temperature, consequences lower constant reaction rate then small reaction is practiced. 

This enhances the solute of concentration (see Fig. 11). Figs. 13 and 14 depict the influence of 

Brinkman number ( )Br  on entropy generation ( )GN  and Bejan number ( ).Be  Viscosity of the 

fluid is increasing function of Brinkman number by definition. So when we increase the values of 

Br viscous dissipation irreversibility enhances due to which more disturbance occur between the 

system and consequently ( )GN  increases (see Fig. 13). Fig. 14 reveals that Bejan number is 

decreasing function of Br because viscous dissipation irreversibility is dominant over heat and 

mass transfer irreversibility (See Fig. 14). Figs. 15 and 16 show the impact of Weissenberg number 

( )We  against ( )GN  and Bejan number ( ).Be  It also shows that entropy of the fluid is more for 

greater estimations of (We) while opposite behavior is seen for Bejan number. 

 

𝐹𝑖𝑔. 1: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑊𝑒𝑖𝑠𝑠𝑒𝑛𝑏𝑒𝑟𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 



2021 391(2 )

83

 

𝐹𝑖𝑔. 2: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

 

𝐹𝑖𝑔. 3: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑚𝑖𝑥𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

 

𝐹𝑖𝑔. 4: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 buoyancy ratio parameter 𝑜𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 
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𝐹𝑖𝑔. 5: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 Prandtl number 𝑜𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

 

𝐹𝑖𝑔. 6: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 Eckert number 𝑜𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

 

𝐹𝑖𝑔. 7: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 Dufour number 𝑜𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 
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𝐹𝑖𝑔. 8: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 thermal Biot number 𝑜𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

 

𝐹𝑖𝑔. 9: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 Lewis number 𝑜𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

 

𝐹𝑖𝑔. 10: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 Soret number 𝑜𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 
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𝐹𝑖𝑔. 11: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 activation energy parameter 𝑜𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

 

𝐹𝑖𝑔. 12: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 Solutal Biot number 𝑜𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

 

𝐹𝑖𝑔. 13: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 Brinkman number 𝑜𝑛 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 
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𝐹𝑖𝑔. 14: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 Brinkman number 𝑜𝑛 𝐵𝑒𝑗𝑎𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 

 

𝐹𝑖𝑔. 15: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 Weissenberg number 𝑜𝑛 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 

 

𝐹𝑖𝑔. 16: 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 Weissenberg number 𝑜𝑛 𝐵𝑒𝑗𝑎𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 
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7:  Physical quantities 

In this section we will discuss the impact of embedded parameters against skin friction and Nusselt 

number (See Table 1 and 2). Table shows that surface drag force rises with increasing values of 

mixed convection parameter and magnetic parameter while opposite trend is seen for Weissenberg 

number. Table 2 elaborates the influence of Prandtl number, Dufour number and Eckert number 

via Nusselt number. Heat transfer rate enhances for Pr on the other hand decreases for fD  and .Ec  

Table 3 shows that in the limiting case our problem shows the good agreement with the previous 

published literature. Here we have compared our results of (0)f   with [41], [42] and [43] in 

limiting case and we found an excellent agreement which proofs the validity of our problem. 

Table 1: Skin friction values under variation of relevant variables. 

  We  
1  1/2Rex fC−  

1 0.1 0.2 0.9430 

2   0.9474 

3   0.9532 

1 0.2  0.9387 

 0.3  0.9344 

 0.4  0.9283 

 0.1 0.4 1.0050 

  0.6 1.0740 

  0.8 1.1210 

 

Table 2: Nusselt number values under variation of relevant variables. 
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Pr  
fD  Ec  1/2Rex xNu  

1.0 0.3 0.5 1.1300 

1.1   1.2180 

1.2   1.2921 

1.0 0.4  1.0131 

 0.5  0.9086 

 0.6  0.8037 

 0.3 0.6 1.0220 

  0.7 0.9230 

  0.8 0.8217 

 

Table 3: Comparison of (0)f   with [41], [42] and [43] when 
1 0, 1.We N d n= = = = =  

1  Akber et al. [41] Bilal et al. [42] Fatehzadeh et at. [43] Present 

0 -1.000 -1.000 -1.000 -1.000 

0.5 1.11803 1.11800 --- 1.11801 

1.0 -1.41419 -1.41421 -1.41421 -1.4142 

 

8:  Conclusions 

Major findings of this research are: 

• ( )f   enhances via ,  We  and 
1N  while opposite trend is seen for magnetic parameter. 

• Temperature of the fluid rises by enhancing ( )1B  and ( ).fD  

• Concentration is increasing function of ( )1E  and ( ).Sr  
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• Entropy of the system enhances for higher ( )Br  and ( ).We  

• Bejan number have inverse relation with ( )Br  and ( ).We  
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