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In this paper, the two-phase flow of non-Newtonian fluid is investigated. The main source
of the flow is metachronal waves which are caused by the back and forth motion of cilia

attached to the opposite walls of the channel. Magnetohydrodynamics (MHD) of Casson

fluid experience the effects of transverse magnetic fields incorporated with the slippery
walls of the channel. Thermal effects are examined by taking Roseland’s approximation
and application of thermal radiation into account. The heat transfer through the multi-

phase flow of non-Newtonian fluid is further, compared with Newtonian bi-phase flow.
Since the main objective of the current study is to analyze heat transfer through an MHD

multiphase flow of Casson fluid. The two-phase heated flow of non-Newtonian fluid is

driven by cilia motion results in nonlinear and coupled differential equations which are
transformed and subsequently, integrated subject to slip boundary conditions. A closed-
form solution is eventually obtained form that effectively describes the flow dynamics of
multiphase flow. A comprehensive parametric study is carried out which highlights the
significant contribution of pertinent parameters of the heat transfer of Casson multiphase

flow. It is inferred that lubricated walls and magnetic fields hamper the movement of
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multiphase flow. It is noted that a sufficient amount of additional thermal energy moves

into the system, due to the Eckert number and Prandtl number. While thermal radia-
tion acts differently by expunging the heat transfer. Moreover, Casson multiphase flow

is a more suitable source of heat transfer than Newtonian multiphase flow.

Keywords: Casson fluid; methachronal wave; slip conditions; heat transfer; magnetic
field.

PACS numbers: 47.10.A−, 47.11.−j, 47.45.Gx, 44.35.+c, 44.40.+a

Nomenclature

Ūf,p: Horizontal velocity of fluid V̄f,p: Vertical velocity of fluid

X̄, Ȳ : Horizontal and vertical

coordinates

λ: Wavelength

t̄: Time ā: Mean radius of channel

c̄: Wave velocity ρ: Fluid’s density

k: Thermal conductivity C̄: Fractional density

c: Specific heat B0: Magnetic field

σ: Electrical conductivity µs: Fluid’s viscosity

ωv: The relaxation time of velocity ωT : The relaxation time of

temperature

Qr: Radiative heat flux µ0: Plastic viscosity

uf : Dimensionless fluid velocity θf,p: Dimensionless fluid

temperature

e: Eccentricity parameter Pv: Particle volume fraction

parameter

ζ: Casson fluid parameter Λ: Slip parameter

γ: Thermal slip parameter ek: Eckert number

Pd: Prandtl number rd: Radiation parameter

1. Introduction

Cilia is a hair-like motile structure that forms on the surface of the diversity of

eukaryotic cells. The back and forth beating of cilia results in metachronal waves.

It is also a well-known fact that the successive motion of cilia, worm segments/legs,

produce a wavy motion. Therefore, it is termed as “Methachronal wave”. It is found

in nature in abundance, from single-cell organisms, crustaceans, and insects. Bhatti

et al.1 provide heat transfer in fluid-particle suspension due to metachronal waves.

The MHD flows are investigated under the impact of thermal radiation and with

the help of approximated value of Roseland’s law. In successive study pertains to

magnetohydrodynamics of cilia-driven fluid-particle suspension through a porous

channel, Akbar et al.2,3 used the effects of magnetic field on the Casson fluid flows

to investigate the metachronal beating of cilia, respectively by applying uniform

and oblique magnetic fields. The study includes that there is a tremendous hip in

the momentum of the fluid. A three-dimensional flow, generated by metachronal

waves has been simulated by Quek et al.4 The flow dynamics display that fluid
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velocity hampered, due to surface tension caused by the top and bottom layers of

fluid. Nazeer et al.5 have elaborated in detail the removal of mucus from lungs and

bloodstreams, as they mathematically modeled a bio-magnetic fluid bounded by

ciliated walls of wavy channel incorporated with viscous dissipation. Some notable

papers on the metachronal motion can be seen in Refs. 6–8.

Magnetohydrodynamics (MHD) is a well-known phenomenon of fluids, related

to the study of electrically conducting fluids. The implementation of Magnetohydro-

dynamics is very wide in biomedical sciences, engineering, astrophysics, geophysics,

sensor, and magnetic drug targeting.9–17 Mebarak-Oudina et al.18 numerically ana-

lyzed the stability of natural convection through a cylindrical annulus in presence

of radial magnetism and presented various important results for involved param-

eters. Zaim et al.19,20 established a mathematical model to investigate an MHD

natural convection flow of nanofluid (Cu-Water) with the help of the Galerkin Ele-

ment Method. The numerical expressions for velocity, Nusselt number, streamlines,

and isotherms were presented by them. The analysis of convective heat transfer and

discrete heat source for titanic nanofluids through cylindrical annulus presented by

Mebarek-Oudina.21

Lubrication effects are effectively used to expunge skin friction caused by the

rough surfaces, mainly in industries and medical sciences. Ramesh et al.22 studied

the effects of slippery walls on an MHD flow of Jeffrey fluid through the microchan-

nel. Unlike, the previously mentioned studies Nazeer et al.23 applied the velocity slip

condition and, as well as, thermal slip boundary conditions on the magnetohydro-

dynamics of multiphase flow. Similar types of flows under the impact of lubrication

effects are discussed in the following studies.24–26

Heat transfer is the most important mechanical phenomenon. It occurs due to

temperature differences. In this process, thermal energy moves from a region of

higher temperature to a region of lower temperature via three fundamental modes

of heat transfer namely; convection, conduction, and radiation. Fei et al.27 stud-

ied the impact of rotation speed and characteristics of heat transfer on fluid flow.

The rotation of the spiral tube is used to improve the heat transfer rate. Rohachev

et al.28 presented the analysis on the regulation of surface with different sort of

finning under forced air convection. In a combined air-cooling system, the devel-

oped heat transfer surface can be used. Wang et al.29 addressed the representative

experimental data for the available heat transfer model and drop-wise condensa-

tion on a smooth hyperbolic surface. Due to the thickness of the promoter layer,

the condensation heat transfer reduces and decreases the nucleation density. Some

interesting studies on multiphase flows are mentioned in Refs. 30–34.

It is evident from the literature survey that no attention has been made, toward

the comparative analysis of heat transfer through Casson multiphase flow and New-

tonian multiphase flow which are driven by the motile motion of cilia structure.

Since most of the mechanical, industrial, and physiological flows are highly viscous

and multi-components. Therefore, a fruitful effort is made in this connection to

address the missing theoretical problem.
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2. Mathematical Modeling

Consider an unsteady two-dimensional and electrically conducting Casson fluid

through a channel as shown in Fig. 1. The hydro-magnetic multiphase flow is due to

the metachronal waves which travel along the opposite walls. Methachronal waves1

produced by the sequential beating of tiny hair-like structures are given as

Ȳ = F̄ (X̄, t̄) = ā+ ā ∈ Cos
2π

λ
(X̄ − c̄t̄), (1)

X̄ = Ḡ(X̄, t̄) = X̄0 + ā ∈ αCos
2π

λ
(X̄ − c̄t̄), (2)

where X̄ and Ȳ represent coordinates, c̄ is the velocity of the wave, λ is the wave-

length, t̄ is time, and ā is the mean radius of the channel. Therefore, the transport

of cilia structure along horizontal and vertical directions is defined as1,35

Ūf,p =
−2π
λ ā ∈ αc̄Cos 2π

λ (X̄ − c̄t̄)
1− −2π

λ ā ∈ αCos 2π
λ (X̄ − c̄t̄)

, (3)

V̄f,p =
−2π
λ ā ∈ αc̄Sin 2π

λ (X̄ − c̄t̄)
1− −2π

λ ā ∈ αSin 2π
λ (X̄ − c̄t̄)

, (4)

where ‘f ’ and ‘p’ denote fluid and particulate phases, respectively. The flow equa-

tions for both phases are written as:

Fig. 1. (Color online) Geometry of flow problem.
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2.1. Fluid phase equations

Since we are dealing with a two-dimensional flow of Casson fluid, the set of partial

differential equations which are required to describe the conservation of mass and

momentum of base liquid are1,35

∂Ūf
∂X̄

+
∂V̄f
∂Ȳ

= 0, (5)

(1− C̄)ρf

(
∂Ūf
∂t̄

+ Ūf
∂Ūf
∂X̄

+ V̄f
∂Ūf
∂Ȳ

)
= −(1− C̄)

∂P̄

∂X̄

+ (1− C̄)

(
∂

∂X̄
rX̄X̄ +

∂

∂Ȳ
rX̄Ȳ

)
+
C̄S

ωv
(Ūp − Ūf )− σB2

0Ūf , (6)

(1− C̄)ρf

(
∂V f
∂t̄

+ Ūf
∂V̄f
∂X̄

+ V̄f
∂V̄f
∂Ȳ

)
= −(1− C̄)

∂P̄

∂Ȳ

+ (1− C̄)

(
∂

∂X̄
rX̄X̄ +

∂

∂Ȳ
rX̄Ȳ

)
+
C̄S

ωv
(V̄p − V̄f ). (7)

2.2. Particle phase equations

Conservation of mass and momentum of particle phase are given as1,35

∂Ūp
∂X̄

+
∂V̄p
∂Ȳ

= 0, (8)

C̄ρp

(
∂Ūp
∂t̄

+ Ūp
∂Ūp
∂X̄

+ V̄p
∂Ūp
∂Ȳ

)
= −C̄ ∂P̄

∂X̄
+
SC̄

ωv
(Ūf − Ūp), (9)

C̄ρp

(
∂V̄p
∂t̄

+ Ūp
∂V̄p
∂X̄

+ V̄p
∂V̄p
∂Ȳ

)
= −C̄ ∂P̄

∂Ȳ
+ +

C̄S

ωv
(V̄f − V̄p), (10)

where ωT and ωv denoted relaxation time of temperature and velocity. The drag

force coefficient is defined as

S =
9µ0

2a2
λ̄(C̄). (11)

In the above µ0 denotes the viscosity of Casson fluid which is significant to deter-

mine the viscosity of the fluid-particle suspension

µs =
µ0

1− χC̄
. (12)

In (13) and (14), one can identify

λ̄(C̄) =
4

(2− 3C̄)
+

3
√

8C̄ − 3C̄2 + 3C̄

(2− 3C̄)
, (13)

χ =
7

100
e

( 249
100

C̄+ 1107
T

e
− 169

100
C̄

)

. (14)
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2.3. Heat transport equation

(1− C̄)cf ∗ ρf
(
∂T̄f
∂t̄

+ Ūf
∂T̄f
∂X̄

+ V̄f
∂T̄f
∂Ȳ

)
= k

(
1− C̄

) ∂2T̄f
∂Ȳ 2

+
rof × cf C̄

ωT
(T̄p − T̄f )

+
C̄S

ωv
(Ūf − Ūp)2 + µs(1− C̄)rX̄Ȳ

(
∂Ūf
∂Ȳ

)
− ∂QR

∂Ȳ
, (15)

cpρf C̄

(
∂T̄p
∂t̄

+ Ūp
∂T̄p
∂X̄

+ V̄p
∂T̄p
∂Ȳ

)
=
ρpC̄cp
ωT

(T̄f − T̄p). (16)

By Roseland’s approximation, the expression of radiative heat flux is defined as

Qr = −16σ̄T̄ 3

3k̄

∂T̄

∂Ȳ
. (17)

By defining the stress tensor for Casson fluid36

rij =


2εij

(
µ0 +

℘y√
2
∏
c

)
,
∏
c <

∏
,

2εij

(
µ0 +

℘y√
2
∏
c

)
,
∏
c >

∏
,

(18)

where εij is deformation rate component,
∏

is a product of deformation rate, Πc

is the critical value of product-based and µ0 is plastic viscosity. Using the following

given transformation to convert fixed frame to wave frame, we have

x̄ = X̄ − c̄t̄, ȳ = Ȳ , ūf = Ūf − c̄,

v̄f = V̄f , ūp = Ūp − c̄, v̄p = V̄p, p̄ = P̄ .
(19)

And, subsequently, applying nondimensional variables and parameters in the gov-

erning equations, we have

x =
x̄

λ
, y =

ȳ

ā
, uf,p =

ūf,p
c̄
, Pr =

µsc

k
, vf,p =

v̄f,p
c̄δ

,

p =
ā2

λµsc̄
p̄, Re =

ρāc̄

µs
, N =

Sā2

µsωv
, H =

√
B2

0σā
2

µs
,

θf,p =
T̄f,p − T̄0

T̄1 − T̄0
, ek =

c̄2

c(T̄1 − T̄0)
, rd =

4T̄ 3σ̄

µsck̄
, Φ =

b̄

ā
.


. (20)

Considering the long-wavelength assumption and low Reynolds approximation

finally, the governing equations after some necessary manipulation transform into

the following: (
1 +

1

ζ

)
∂2uf
∂y2

−H2(uf + 1)−
(

1

1− C̄

)
dp

dx
= 0, (21)

(
1

Pd
+

4

3
rd

)
∂2θf
∂y2

+ ek

(
1 +

1

ζ

)(
∂uf
∂y

)2

+
ek

N(1− C̄)

(
dp

dx

)2

= 0. (22)
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The expression for pressure gradient and temperature of both phases can be

obtained as

1

N

dp

dx
= (uf − up), (23)

θf = θp. (24)

2.4. Boundary conditions

In order to minimize the wall friction, the lubrication effects are applied on the

opposite walls of the channel. Therefore, the momentum and thermal boundary

conditions are chosen as:

(i)
∂

∂y
uf (0) = 0, uf (h) + 1 = − 2πΦαβ cos 2π(x)

1− 2πΦαβ cos 2π(x)
+

Λ

ζ

∂uf (h)

∂y
, (25)

(ii)
∂

∂y
θf (0) = 0, θf (h) + γ

∂

∂y
θf (h) = 1. (26)

It is to be noted that e denotes the eccentricity of the elliptic path.

3. Solution of the Problem

Equations (21)–(22) are coupled and nonlinear differential equations which are inte-

grated subject to the boundary conditions (25)–(26) which yield the transport of

Casson fluid and particles given as

uf =
(1 + a+BP )(2 Cosh[Ay])− 1−BP )

2(ζ Cos[Ah]−AΛ Sinh[Ah])
, (27)

up =
(1 + a+BP )

2(ζ Cos[Ah]−AΛ Sinh[Ah])

(
2 Cosh[Ay])− 1−BP − P

N

)
. (28)

Similarly, the expression for heat transport through the multiphase flow is

θ = c3 + a1y
2 + a2 Cosh[2Ay]. (29)

In the above equation, the constant is identified as

c3 =

−8L1 + 2A2h2L2L2 + 4A2hL2L2γ − L2L2 Cosh[2Ah]

− 2AL2L2γ Sinh[2Ah]− 4h2L3 − 8hγL3

8L1
. (30)

Now, to determine a separate expression for the volumetric flow rate of Casson fluid

and particle with the help of the following equations, we have

Qf = (1− c̄)
(

(1 + a+BP )ζ(2 Sinh[Ay])

2(ζ Cosh[Ah]−AΛ Sinh[Ah])
− h−BPh

)
, (31)

Qp = c̄

(
(1 + a+BP )ζ(2 Sinh[Ay])

2(ζ Cosh[Ah]−AΛ Sinh[Ah])
− h−BPh− hP

N

)
. (32)
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The total volume flow rate is

Q = Qp +Qf − 1, (33)

Q =


(1− C̄)

(
−h−BhP +

(1 + a+BP )ζ sinh[Ah]

A(ζ cosh[Ah]−AΛ sinh[Ah])

)
+ C̄(

−h−BhP +
(1 + a+BP )ζ sinh[Ah]

A(ζ cosh[Ah]−AΛ sinh[Ah])
− hP

N1

)
− 1,

. (34)

The contribution of pressure gradient in the current heat transfer through mul-

tiphase flow is very significant. The pressure gradient is given by the following

expression:

P =
(A(h+Q)ζ Cosh[Ah]− (A2(h+Q)Λ + (1 + a)ζ) Sinh[Ah]N

−AhCosh[Ah](c+BN) + Sinh[Ah](A2chΛ +B(A2hΛ + ζ)N)
. (35)

4. Results and Discussion

This section is dedicated to the parametric study which graphically shows the alter-

ing behavior of heat and mass transfer of Casson fluid. The pertinent parameters

which are taken into account to analyze their contribution include wavenumber (λ),

a measure of the eccentricity parameter (e), particle volume fraction (Pv), Casson

fluid parameter (ζ), slip parameter (Λ), Thermal slip parameter (γ), Eckert num-

ber (ek), Prandtl number (Pr), and radiation parameter (rd).

As the current investigation is a comparative analysis of Casson multiphase flow

with Newtonian multiphase flow, subject to apply slip boundary conditions. Here,

we also present the comparison between Newtonian and non-Newtonian fluid by

sketching several graphs for various parameters. Graphs with dashed (ζ → 1) repre-

sent the Casson multiphase flow, while solid sketches (ζ →∞) are used for Newto-

nian bi-phase flow. For convenience, this portion is further divided into subsections

to elaborate findings in detail.

4.1. Flow analysis

In this section variation in the flow of base, the liquid is examined against the

selected parameters in Figs. 2–5, respectively. Figure 2 depicts the velocity profile

of each type of flow against different values of eccentricity parameter (e). It is noted

that the momentum of the flow increases for both Newtonian fluid and Casson fluid

in the region y < 0.6. But, there is an opposite trend in the momentum of the

fluid. It is observed that in the region for y > 0.6, each velocity of the flow keeps

on reducing rapidly. However, the shear thickening effects are so dominant in the

non-Newtonian fluid which enhances the viscous forces. Therefore, the transport of

Casson fluid is much slower than Newtonian fluid as shown in the diagram.

In Fig. 3, the variation of wavenumber is spotted. Wavenumber is defined as

the number of waves per unit distance (λ = 1
λ̃

). It is very interesting to note that

wave number and velocity are inversely related to each other. It is examined that

2150204-8

In
t. 

J.
 M

od
. P

hy
s.

 B
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

U
Z

H
O

U
 U

N
IV

E
R

SI
T

Y
 o

n 
07

/3
1/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 30, 2021 13:10 IJMPB S0217979221502040 page 9

2nd Reading

A comparative study of MHD fluid-particle suspension induced by metachronal wave

Fig. 2. (Color online) Velocity profile uf for e when Λ = 0.05, λ = 0.2, H = 1, ek = 0.5, Pv = 0.2,

rd = 3.

Fig. 3. (Color online) Velocity profile uf for λ when Λ = 0.05, e = 0.5, H = 1, ek = 0.5, Pv = 0.2,

rd = 3.

Fig. 4. (Color online) Velocity profile uf for Pv when Λ = 0.05, e = 0.5, H = 1, ek = 0.5,

λ = 0.2, rd = 3.
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Fig. 5. (Color online) Velocity profile for H when Λ = 0.05, e = 0.5, H = 1, ek = 0.5, λ = 0.2,

rd = 3.

by increasing the value of (λ) the velocity of base fluid increases in the region

y < 0.6 while uf decreases for y > 0.6. Figure 4 shows that there is an inverse

relationship between velocity profile uf and volume fraction Pv. We can see that

increment the value Pv causes the velocity of the base fluid to reduce. Finally, the

role of magnetic fields on the multiphase flow is investigated in Fig. 5. It is examined

that by increasing the value of the Hartman number the velocity profile decreases.

Hartman number produces Lorentz force, and Lorentz force is a force that opposes

the flow and is produced when the magnetic field is applied to electrically conducting

fluid. Due to the influence of Lorentz forces, magnetic fields oppose the flow.

4.2. Thermal analysis

This section is about the heat transferred by both phases from the region of higher

temperature to a region of lower temperature. Figures 6–8 discuss the temperature

profile (θf,p) of Newtonian fluid and non-Newtonian fluid against different parame-

ters. Figure 6 shows the contribution of the Prandtl number (Pr). It can be noticed

that heat transfer rate enhances with respect to the dimensionless quantity because

the Prandtl number (Pr) exhibits direct relation by enhancing the values of Pv.

On the contrary, the heat transfer is much better in Casson fluid flow as com-

pared to the Newtonian case. This can also be inferred from the fact that force of

friction or resistance between adjacent fluid particles in Casson fluid, adds extra

heat into the system due to its less momentum/velocity. In Fig. 7, a rise in tem-

perature profile (θf,p) against the increasing values of the Eckert number (ek) is

observed. This is because increasing values of Eckert number increased vibration of

fluid due to large kinetic energy which results in collision of fluid particles. Hence,

the rapid collision of molecules enhances the dissipation of heat in the boundary

layer, which heightens the temperature field. Figure 8 shows an altogether different

phenomenon in the temperature profile. Unlike, in the previous two cases, the heat

2150204-10
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Fig. 6. (Color online) Temperature profile θf,p for Pd when Λ = 0.05, γ = 0.1, e = 0.5, H = 1,

ek = 0.5, λ = 0.2, rd = 3.

Fig. 7. (Color online) Temperature profile θf,p, for ek when Λ = 0.05, γ = 0.1, e = 0.5, H = 1,

rd = 3.0, λ = 0.2, Pv = 0.2.

Fig. 8. (Color online) Temperature profile θf,p, for rd when Λ = 0.05, γ = 0.1, e = 0.5, H = 1,
ek = 0.5, λ = 0.2, Pv = 0.2.
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Fig. 9. (Color online) Pressure rise versus volume flow rate for λ when Λ = 0.05, e = 0.5, H = 1,

ek = 0.5, λ = 0.2, Pv = 0.2.

Fig. 10. (Color online) Pressure rise versus volume flow rate for Pv when Λ = 0.05, e = 0.5

rd = 3, ek = 0.5, λ = 0.2, H = 1.

Fig. 11. (Color online) Pressure rise versus volume flow rate for H when Λ = 0.05, e = 0.5,

rd = 3, ek = 0.5, λ = 0.2, Pv = 0.2.
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transfer of multiphase flow reduces against increasing values of radiation parame-

ter. Physically, when the radiation parameter increases to large values it yields the

dominance effect of conduction over radiation. These results decrease in boundary

layer thickness and increase in heat loss which decreases temperature profile.

4.3. Influence of pressure rise

Flow caused by metachronal wave contribution of pressure rise is very significant.

Figures 9–11 describe the role of pressure rise on heat transfer of multiphase flow

Fig. 12. (Color online) Streamlines for e(0.1, 0.3, 0.5) when (a) Λ = 0, λ = 0.2, Pv = 0.2, H = 1,

ζ = 1. (b) Λ = 0.2, λ = 0.2, Pv = 0.2, H = 1, ζ = 1.
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against wave number (λ), particle volume fraction (Pv), and Hartmann number (H).

The contribution of pressure rise acts differently depending on the four pumping

regions namely; Retrograde pumping region (∆P > 0, Q < 0), peristaltic pumping

region (∆P > 0, Q > 0), Free pumping region (∆P < 0, Q < 0), Co-pumping region

(∆P < 0, Q > 0). Figure 9 displays the effects of wave number (λ) on pressure rise,

it is observed that in all regions the wave number contributed equally. By increasing

Fig. 13. (Color online) Streamlines for λ(0.1, 0.12, 0.14) when (a) Λ = 0, e = 0.5, Pv = 0.2,

H = 1, ζ = 1. (b) Λ = 0.2, e = 0.5, Pv = 0.2, H = 1, ζ = 1.
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the quantity of wavenumber (λ), there is a vivid decline in the strength of pressure

rise for both types of multiphase flows (i.e., ζ → 1 and ζ → ∞). In Fig. 10, the

behavior of pressure against particle volume fraction (Pv) is plotted. It is interesting

to note that in the retrograde pumping region volume fraction decreases while it

has an opposite trend in the remaining regions. Variation in pressure rise due to

Hartmann number (H) can be seen in Fig. 11. In the retrograde pumping region,

Hartmann number (H) shows dual behavior for Q < −1, when Hartmann number

Fig. 14. (Color online) Streamlines for H(1.0, 2.0, 3.0) when (a) λ = 0.2, e = 0.5, ζ = 1, Pv = 0.2,

Λ = 0. (b) λ = 0.2, e = 0.5, ζ = 1, Pv = 0.2, Λ = 0.2.
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(H) increases then a rise in pressure is observed. But pressure rise decreases when

Hartmann number (H) increases when Q > −1 for both Newtonian and non-

Newtonian fluid cases.

4.4. Trapping phenomenon

Back and forth motion of cilia structure introduces “Trapping Phenomenon”.

Emerging of circulating boluses is called the trapping phenomenon. Boluses are

Fig. 15. (Color online) Streamlines for ζ(0.5, 2.0,∞) when (a) λ = 0.2, e = 0.5, H = 1, Pv = 0.2,

Λ = 0. (b) λ = 0.2, e = 0.5, H = 1, Pv = 0.2, Λ = 0.2.
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caused by the wall resistance on the streamlines. Enclosed streamlines for both

no-slip and slip boundary conditions have been graphed in Figs. 12–16 against

eccentricity parameter, wavenumber, Casson fluid, Volume fraction, and Hartman

number, respectively. In Fig. 12(a), we can observe that by increasing e the mag-

nitude of bolus flattened passively while the number of boluses decreased and for

both the cases e has no significant effect on the magnitude of bolus when slip

condition applies on it as shown in Fig. 12(b), the magnitude is approximately

Fig. 16. (Color online) Streamlines for Pv(0.1, 0.2, 0.3) when (a) λ = 0.2, e = 0.5, Λ = 0, H = 1,

ζ = 1. (b) λ = 0.2, e = 0.5, Λ = 0.2, H = 1, ζ = 1.
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constant. In Fig. 13(a), we observe that by increasing wavenumber λ the magni-

tude of bolus lessened passively also the size and number of bolus decreased. When

the slip condition applies on it then magnitude is approximately constant also size

and number of bolus remain the same as shown in Fig. 13(b). From Fig. 14(a), we

predict that the Hartmann number has a very rapid effect on the magnitude of a

bolus by increasing H. It is seen that by increasing values of Hartmann number,

streamlines come to a close due to a decrease in flow strength, and the size of bolus

decreases. This decrease is due to Lorentz forces which behave as retarding forces.

From Fig. 15, we observe that by increasing the value of the Casson fluid param-

eter the magnitude of bolus decreases very gradually. Figure 16 depicted that by

increasing the particle volume fraction (Pv) the magnitude of bolus decreased.

5. Conclusions

In this paper, the two-phase flow of Casson fluid is investigated. The main source

of the flow is metachronal waves which are caused by the back and forth motion of

cilia attached to the opposite walls of the channel. Hydro-magnetic flow experiences

the effects of transverse magnetic fields incorporated with the slippery walls of the

channel. A closed-form solution is obtained by solving differential equations with

the assumption of long-wavelength and low Reynolds number. A comprehensive

parametric study is carried out to infer the main contribution of the significant

parameters. Some significant findings are enumerated below:

• The transport of Casson fluid is much slower than Newtonian fluid.

• A similar contribution of wavenumber (λ) and measure of the eccentricity param-

eter (e) is observed on the velocity of base fluid (uf ) under Casson fluid param-

eter (ζ → ∞) ζ → 1. But for slip conditions, the height of the graph is reduced

when ζ = 1.

• Hartmann number (H) and volume fraction (Pv) do not support the momentum

of the fluid by reducing its velocity.

• More energy is added to the system for the Eckert number (ek) and Prandtl

number (Pr). While the heat of the system reduces for radiation parameters (rd)

in both types of multiphase flows.

• Under the thermal slip parameter, the height of the graph ζ → 1 is higher than

the ζ →∞ under no-slip conditions.

• The behavior of pressure rises for wavenumber λ is identical in all regions. In

the comparison of non-Newtonian and Newtonian fluid graphs, firstly the height

ζ → 1 is higher and then lower after the intersection for ζ →∞.

• These results lead to the further analysis of metachronal wave and particle fluid.
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