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Abstract: For a graph G without isolated vertices, the inverse degree of a graph G is defined
as ID(G) = ∑u∈V(G) d(u)−1 where d(u) is the number of vertices adjacent to the vertex u in G.
By replacing −1 by any non-zero real number we obtain zeroth-order general Randić index, i.e.,
0Rγ(G) = ∑u∈V(G) d(u)γ, where γ ∈ R− {0}. Xu et. al. investigated some lower and upper bounds
on ID for a connected graph G in terms of connectivity, chromatic number, number of cut edges,
and clique number. In this paper, we extend their results and investigate if the same results hold for
γ < 0. The corresponding extremal graphs have also been identified.
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1. Chemical Graph Theory

Chemical graph theory is a branch of mathematics that combines graph theory and chemistry.
Graph theory is used to mathematically model molecules in order to gain insight into the physical
properties of these chemical compounds. A molecular graph of a chemical compound is a graph in
which atoms are represented by vertices and edges are the bonds between them. The molecular graphs
of napthalene, pyrene, and coronene are shown in Figure 1. A topological index is a number associated
to the molecular graph that can help to predict the various chemical or physical properties of the
molecule. Topological indices play vital roles in the field of chemical graph theory.

H. Wiener introduced the first topological index when he was working on the boiling points of
the paraffin. In [1–3], he showed that there are very good correlations between the Wiener index of the
molecular graph of organic compounds and different physico-chemical properties of the molecular
compounds. After that a lot of research have been done on the applications of graph theory in
chemistry [4–14].

Nowadays, study of behavior of topological indices is an important task.
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Napthalene Pyrene Coronene

Figure 1. The molecular graphs of some polycyclic aromatic hydrocarbons.

2. Introduction

Throughout this paper, we only consider finite, connected, and simple graphs and for the
terminologies on the graph theory not defined here one can see [15]. Let G be a graph with vertex set
V(G) and edge set E(G). The number of elements in V(G) and E(G) are called the order and the size
of G, respectively. For a vertex u of G, NG(u) is the set of vertices adjacent to the vertex u in G and the
number of elements in NG(u) is called the degree of the vertex u in G, denoted by dG(u) or simply d(u).
Additionally, NG[u] = NG(u) ∪ {u}. A vertex u is said to be a pendant vertex if d(u) = 1 and an edge is
said to be a pendant edgeif it is incident with a pendant vertex. In a graph G the maximum and minimum
degrees are denoted by4(G) and δ(G), respectively. For subsets S ⊂ V(G) and T ⊂ E(G), G− S and
G− T are the subgraphs obtained from G by removing the element of S and T, respectively, from G.
For two non-adjacent vertices u and v in a graph G, G + uv is the graph obtained from G by adding an
edge between u and v and G− uv is the graph deduced by deleting the edge uv.

The minimum number of colors required to color a graph G in such a way that no adjacent vertices
have the identical color is called the chromatic number of G and is denoted by χ(G). A subset of vertices
is called a clique if it induces a complete graph. The maximum number of vertices in a clique is called
the clique number of G and is denoted by ω(G). Let G1 and G2 be two vertex disjoint graphs. G1 ∪ G2 is
the graph which consists of two components G1 and G2. The join of G1 and G2, G1 + G2, is the graph
whose vertex set is V(G1) ∪V(G2) and the edge set is E(G1) ∪ E(G2) ∪ {uv : u ∈ V(G1), v ∈ V(G2)}.
A subset of vertices is called an independent set if it induces an empty graph. Two edges in G are said to
be independent edges if they are non-adjacent.

A connected graph is called c-connected, for c ≥ 1, if either G is a Kc+1 complete graph or else it
has at least c+ 2 vertices and has no (c− 1)-vertex cut. On the same lines, a graph G is c-edge-connected
if |G| ≥ 2 and it does not have any (c− 1)-edge cut. The connectivity, κ(G), of G is the maximum value
of c such that G is c-connected. The edge-connectivity, κ′(G) is defined analogously. Note that for
a graph G of order n we have κ(G) ≤ κ′(G) ≤ δ(G) ≤ n− 1 and κ(G) = n− 1, κ′(G) = n− 1 and
G = Kn are equivalent.

Throughout this paper, Pn, Sn, Cn and Kn represent the path, star, cycle, and complete graphs with
n vertices.

For a graph G without isolated vertices, Kier et. al. [16] proposed the zeroth-order Randić index as:

0R− 1
2
(G) = ∑

u∈V(G)

d(u)−1/2
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In 2005, Li et. al. [17] introduced the zeroth-order general Randić index by replacing the fraction
− 1

2 by any non-zero real number γ:

0Rγ(G) = ∑
u∈V(G)

d(u)γ

In [18], authors investigated some sharp bounds on 0Rγ for unicyclic graphs with n vertices
and diameter d. Volkmann [19] presented sufficient conditions for digraphs to be maximally edge
connected in terms of the zeroth-order general Randić index. In [20] Yamaguchi obtained the trees with
first three largest zeroth-order general Randić indices among all the trees with given order, diameter, or
radius. Jamil et. al. [21] investigated the extremal graphs of k-generalized quasi trees for zeroth-order
general Randić index. For further results we refer to [22–35].

For a graph G without isolated vertices, the inverse degree ID(G) of G is defined as:

ID(G) = ∑
u∈V(G)

d(u)−1

The inverse degree of a graph was initially discussed in [36]. After that a lot of work have been
done on inverse degree, for details we refer to [37–40]. Xu et. al. [41] investigated certain bounds on
ID(G) for a connected graph G in terms of clique number, chromatic number, connectivity, or number
of cut edges. They also characterized the extremal graphs. In this paper, we extended their work and
investigated if the corresponding results hold for zeroth-order general Randić index, their results can
be viewed as corollaries of the main theorems.

3. Preliminary Results

First we present some lemmas that will be useful in proving main results. From the definition of
zeroth-order general Randić index for γ < 0 we have the following lemma.

Lemma 1. Let G be a graph such that vw ∈ E(G) and y, z ∈ V(G) are nonadjacent. Then for γ < 0, we have:

1. 0Rγ(G− vw) > 0Rγ(G) if d(v), d(w) ≥ 2;
2. 0Rγ(G + xy) < 0Rγ(G) where x and y are non-isolated vertices in G.

Lemma 2. For n > 2, let G be a graph of order n with v, w ∈ V(G) such that d(v) ≥ d(w)

and NG(w)\NG[v] = {w1, w2, . . . , wt} where t > 0. From G we attain a new graph G∗ = (G −
{ww1, ww2, . . . , wwt}) + {vw1, vw2, . . . , vwt}. If d(w) > t, for γ < 0 we have 0Rγ(G∗) >0 Rγ(G).

Proof. From the definition of zeroth-order general Randić index, we have 0Rγ(G∗) − 0Rγ(G) =

(d(v) + t)γ− d(v)γ + (d(w)− t)γ− d(w)γ. We deduce that f (x) = xγ− (x− t)γ is a strictly increasing
function for x > t and γ < 0. Since d(v) ≥ d(w) we have d(v) + t > d(w) and this implies that
0Rγ(G∗)− 0Rγ(G) = f (d(v) + t)− f (d(w)) > 0.

Lemma 3. For n ≥ x ≥ 2 and γ < 0, the function:

ψ(x) = (n− x)xγ − (n− x + 1)(x− 1)γ (1)

is a strictly increasing function.

Proof. For given ψ(x), we obtain ψ′(x) = γ(n− x)xγ−1 − xγ − γ(n− x + 1)(x− 1)γ−1 + (x− 1)γ >

γ((n− x)xγ−1 − (n− x + 1)xγ−1)− xγ + (x− 1)γ = −γxγ−1 − xγ + (x− 1)γ > 0. Hence, for given
n ≥ x ≥ 2 the function ψ(x) is strictly increasing.
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Lemma 4. Let n, c be integer numbers, n ≥ 3 and 1 ≤ c ≤ n− 2. For 1 ≤ x ≤ n− c− 1 and −1 ≤ γ < 0,
the function f (x) = x(x + c− 1)γ + (n− c− x)(n− 1− x)γ is minimum for x = 1 and x = n− c− 1.
For c = 1 and γ = −1 we get f (x) = 2.

Proof. We have f (x) = f (n− c− x), which implies that x = (n− c)/2 is a symmetry axis for the
graph of this function. Its derivative equals f ′(x) = (x + c − 1)γ−1(c − 1 + x(γ + 1)) − (n − 1−
x)γ−1(n(γ + 1) − 1− γc − x(γ + 1)). By the symmetry of f we can only consider the case when
x ≥ (n− c)/2. We have f ′((n− c)/2) = 0 and we shall prove that f ′(x) < 0 for x > (n− c)/2. This
condition is equivalent to: (

x + c− 1
n− 1− x

)γ−1
<

(γ + 1)(n− x)− γc− 1
x(γ + 1) + c− 1

. (2)

Since x > (n− c)/2 and γ < 0 it follows that
(

x+c−1
n−1−x

)γ−1
<
(

x+c−1
n−1−x

)−1
= n−1−x

x+c−1 . But n−1−x
x+c−1 ≤

(γ+1)(n−x)−γc−1
x(γ+1)+c−1 since this is equivalent to γ(c− 1)(2x− n + c) ≤ 0 and Equation (2) is proved.

Lemma 5. Every c-chromatic graph has at least c vertices of degree at least c− 1 [15].

4. Main Results and Discussion

In this section, we will present our main results.

4.1. Extremal Graphs w.r.t. Zeroth-Order General Randić Index in Terms of Chromatic Number and
Clique Number

Let {(n, c) denote the set of all connected graphs having order n and chromatic number c and
f(n, c) the set of all connected graphs with order n and clique number c. Hereafter, we always consider
that n1 ≥ n2 ≥ . . . ≥ nc are positive integers with ∑c

i=1 ni = n. A complete c-partite graph of order n
whose partite sets are of size n1, n2, . . . , nc, respectively, is denoted by Kn1,n2,...,nc . Kn1,n2,...,nc is called the
Turán graph if |ni − nj| ≤ 1 for each 1 ≤ i, j ≤ c. The Turán graph with n vertices and c-partite sets is
denoted by Tn(c) and such a graph is shown in Figure 2. For c = 1 and c = n we have {(n, c) = {Kn}
and {(n, c) = {Kn}, respectively. Also, f(n, 1){Kn}, and f(n, n){Kn}. Here we will investigate the
extremal graphs in {(n, c) and f(n, c) w.r.t. 0Rγ.

T8(3)

Figure 2. A Turan graph.

Lemma 6. Suppose that there exist two indices i, j such that i 6= j, 1 ≤ i, j ≤ c and nj − ni ≥ 2. Then for
γ < 0 we have:

0Rγ(Kn1,...,ni ,...,nj ,...,nc) >
0Rγ(Kn1,...,ni+1,...,nj−1,...,nc)

Proof. Suppose that i < j. From the definition of zeroth-order general Randić index we have:

0Rγ(Kn1,...,ni ,...,nj ,...,nc)− 0Rγ(Kn1,...,ni+1,...,nj−1,...,nc) = ni(n− ni)
γ + nj(n− nj)

γ

− (ni + 1)(n− ni − 1)γ − (nj − 1)(n− nj + 1)γ

= ψ(x)− ψ(y + 1),
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where x = n− ni, y = n− nj and ψ(x) is given by (1). Additionally, we have nj − ni ≥ 2 which implies
that x− y ≥ 2 and x > y + 1. By Lemma 3 ψ(x) is strictly increasing, which yields:

0Rγ(Kn1,...,ni ,...,nj ,...,nc)− 0Rγ(Kn1,...,ni+1,...,nj−1,...,nc) > 0,

which completes the proof.

For this subsection assume that 1 < c < n and n = cq + r, where 0 ≤ r < c, i.e., q =
⌊ n

c
⌋
.

Theorem 1. For any graph G ∈ {(n, c) and γ < 0, we have:

0Rγ(G) ≥ (c− r)
⌊n

c

⌋
(n−

⌊n
c

⌋
)γ + r

⌈n
c

⌉
(n−

⌈n
c

⌉
)γ

and lower bound is achieved if and only if G = Tn(c).

Proof. Let G ∈ {(n, c) such that G has the minimal zeroth-order general Randić index for γ < 0.
From the definition of the chromatic number, G has c color classes and every color class is an
independent set. Suppose that each color class contains ni vertices, where 1 ≤ i ≤ c. By Lemma 1 one
deduces that G must be a complete c-partite graph Kn1,...,nc and Lemma 6 guarantees that G = Tn(c).
We have:

0Rγ(Tn(c)) = (c− r)
⌊n

c

⌋
(n−

⌊n
c

⌋
)γ + r

⌈n
c

⌉
(n−

⌈n
c

⌉
)γ,

which completes the proof.

Further, we shall use some notation introduced in [41]. A graph gained by joining n− c pendant
vertices to unique vertex of Kc is called a pineapple graph and is denoted by PAn(c). Sn(m1, m2, . . . , mc)

will denote a connected graph of order n gained by joining n− c pendant vertices to a complete graph
Kc, such that mi pendant vertices are attached to the ith vertex of Kc for 1 ≤ i ≤ c. A pineapple graph
of order 8 is shown in Figure 3. It follows that ∑c

i=1 mi = n− c. We consider that the vertices in the
clique are labeled v1, v2, . . . , vc. From the definition of Sn(m1, m2, . . . , mc) we have Sn(0, 0, . . . , 0) = Kc

and Sn(n− c, 0, . . . , 0) = PAn(c).
In the following theorem we give the maximum value of 0Rγ(G) by using the order n and

chromatic numbers c of G.

PA8(4)

Figure 3. A pineapple graph.

Theorem 2. Let γ ≤ −1 and G ∈ {(n, c), then,

0Rγ(G) ≤ n− c + (n− 1)γ + (c− 1)(c− 1)γ

and the equality holds if and only if G = PAn(c).

Proof. Since G is connected it follows that c ≥ 2. If c = n then G = Kn and the theorem is verified
directly. It remains to consider the case when 2 ≤ c ≤ n− 1. It follows that n ≥ 3. Clearly, for c = 2 G is
a connected bipartite graph. Moreover, if G = Sn (note that the star Sn coincides with Sn(n− 2, 0) and
with PAn(2)), then the above equality holds and in this case 0Rγ(G) = n− 1 + (n− 1)γ. Otherwise,
G has at least two non-pendant vertices. This implies 0Rγ(G) ≤ 2 · 2γ + n− 2 < (n− 1) + (n− 1)γ,
because 2 · 2γ − 1− (n− 1)γ < 2 · 2γ − 1 ≤ 0. Hence, G is not maximal if G 6= Sn.
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Now, we prove the theorem for 3 ≤ c ≤ n− 1. Assume that V(G) = {v1, v2, . . . , vn}. By Lemma 5,
we can consider a set of vertices A(G) = {v1, v2, . . . , vc}, such that d(vi) ≥ c− 1 for 1 ≤ i ≤ c.
Then we have |V(G)\A(G)| > 0. If there exists vk ∈ V(G)\A(G) such that d(vk) ≥ 2, then 0Rγ(G) ≤
c(c− 1)γ + 2γ + n− c− 1 < n− c + (n− 1)γ + (c− 1)(c− 1)γ if and only if (c− 1)γ + 2γ − 1− (n−
1)γ < 0. The last inequality is valid since c ≥ 3 implies (c− 1)γ ≤ 2γ, which yields (c− 1)γ + 2γ −
1− (n− 1)γ ≤ 2γ+1 − 1− (n− 1)γ < 0, which holds because γ ≤ −1.

This shows that d(vk) = 1 for each vk ∈ V(G)\A(G), where c + 1 ≤ k ≤ n, for a graph having
maximum 0Rγ. Since G has chromatic number c it follows that the subgraph of G induced by A(G) is
Kc. It follows that G is a complete graph Kc with n− c pendant vertices, that is, Sn(m1, m2, · · · , mc)

such that ∑c
i=1 mi = n − c. If Sn(m1, m2, . . . , mc) = PAn(c) we are done. Otherwise, by applying

Lemma 2 several times and supposing that m1 ≥ m2 ≥ . . . ≥ mc, we get:

0Rγ(G) = 0Rγ(Sn(m1, m2, . . . , mc)) <
0Rγ(Sn(m1 + mc, m2, . . . , mc−1, 0))

< . . . < 0Rγ(Sn(n− c−m2, m2, 0, . . . , 0)) < 0Rγ(Sn(n− c, 0, . . . , 0))

= 0Rγ(PAn(c)),

which completes the proof.

The following result gives upper and lower bounds on zeroth-order general Randić index in terms
of order n and clique number c.

Theorem 3. For any graph G ∈ f(n, c) and γ ≤ −1 we have:

(c− r)
⌊n

c

⌋
(n−

⌊n
c

⌋
)

γ
+ r

⌈n
c

⌉
(n−

⌈n
c

⌉
)γ ≤0 Rγ(G) ≤ n− c + (n− 1)γ + (c− 1)(c− 1)γ

The lower bound is attained if and only if G = Tn(c) and the upper bound if and only if G = PAn(c).

Proof. The main arguments of this proof are similar to those of the proof of Theorem 3.3 from [41].
Upper bound: Let G′ ∈ f(n, c) having as large as possible zeroth-order general Randić index.

Since G′ has clique number c, we can conclude that G′ have a clique {v1, v2, . . . , vc}. From Lemma 1
(1), we can see that G′ must be a graph achieved by joining to vi some tree Ti for 1 ≤ i ≤ c. Then the
chromatic number of G′ is c, and the result immediately follows from the proof of Theorem 2.

Lower bound: Let f′(n, c) be the set of all graphs having order n and clique number less than or
equal to c. We shall prove the case below first.

Claim 1. For each graph G ∈ f′(n, c), we have:

0Rγ(G) ≥ 0Rγ(Tn(c))

and equality holds if and only if G = Tn(c).
Proof of Claim 1. If G = Kn1,...,nc , then by Lemma 6 we have:

0Rγ(G) = 0Rγ(Kn1,...,nc) ≥0 Rγ(Tn(c))

and equality holds if and only if G = Tn(c).
Otherwise, G is not a multipatite complete graph of the form Kn1,...,nc . Let u ∈ V(G) such that u

has maximum degree d(u) = 4(G) in G. Let A = NG(u) and B = V(G)\A. The clique number of the
induced subgraph of G by A, G[A], is at most c− 1 since ω(G) ≤ c. Now we compose a graph G∗ on
V(G) as: G∗ is achieved from the subgraph G[A] and the subset B by attaching all vertices in A to all
vertices of B and removing all possible edges which have both ends in B. One can easily notice that B is
an independent set of G∗ and ω(G∗) ≤ c. Let w ∈ V(G∗) = V(G); if w ∈ A we have dG∗(w) ≥ dG(w)

from the construction of G∗ and if w ∈ B we have dG∗(w) ≥ dG(w) by the choice of u. This implies
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that 0Rγ(G∗) ≤ 0Rγ(G). If G∗ is a complete t-partite graph with n vertices, where 2 ≤ t ≤ c, then we
have 0Rγ(G) ≥0 Rγ(G∗) =0 Rγ(Kn1,...,nt) ≥0 Rγ(Tn(t)) ≥0 Rγ(Tn(c)).

The inequality 0Rγ(Tn(t)) ≥0 Rγ(Tn(c)) follows since Tn(t) has vertex degrees equal to n− b n
t c

and n− d n
t e, which are less than or equal to the vertex degrees of Tn(c).

Otherwise, repeating the same procedure on G[A] by at most c− 2 times (during this process if
Gi is a complete t-partite graph with n vertices, we stop the above process), we gain a string of graphs:

G = G0, G1, . . . , Gr, Gr+1, . . . , Gp−1, Gp = Kn1,...,nt ; t ≤ c

such that 0Rγ(G) = 0Rγ(G0) ≥ 0Rγ(G1) ≥ . . . ≥ 0Rγ(Gp−1) ≥ 0Rγ(Gp) = 0Rγ(Kn1,...,nt) ≥
0Rγ(Tn(c)).

Since G is not a multipatite complete graph of the form Kn1,...,nc , then in the above string of graphs
there must occur two successive non-isomorphic graphs Gr and Gr+1 such that : u being a vertex with
maximum degree in Gr and denoting A = NGr (u) and B = V(Gr)\A, when we transform Gr to Gr+1,
there must exist a vertex w in A or B such that dGr+1(w) > dGr (w). Hence,

0Rγ(G) = 0Rγ(G0) ≥ 0Rγ(G1) ≥ · · · ≥0 Rγ(Gr) >
0 Rγ(Gr+1) ≥ . . .

≥ 0Rγ(Gp−1) ≥ 0Rγ(Gp) =
0Rγ(Kn1,...,nt) ≥ 0Rγ(Tn(c))

and the proof of the claim is complete.
Consequently, we have shown that for each graph G ∈ f′(n, c), 0Rγ(G) reaches its minimum in

f′(n, c), equal to 0Rγ(Tn(c)) = (c− r)
⌊ n

c
⌋
(n−

⌊ n
c
⌋
)

γ
+ r

⌈ n
c
⌉
(n−

⌈ n
c
⌉
)γ, only for Tn(c). Note that

f(n, c) ⊆ f′(n, c) with Tn(c) ∈ f(n, c) and our lower bound was proved.

4.2. Extremal Graphs w.r.t. Zeroth-Order General Randić Index in Terms of Number of Cut Edges

In this subsection, we will investigate the bounds on zeroth-order general Randić index in terms
of number of cut edges. We shall also characterize the graphs which will provide the extremal values.
Let Ω(n, c) be the set of connected graphs having n vertices and c > 0 cut edges. Let Cc

n−c be a graph
gained by joining c pendant vertices to unique vertex of cycle Cn−c, as illustrated in Figure 4. It is easy
to see that Kn and Cn have the minimal and maximal zeroth-order general Randić index among all
connected n-vertex graphs without any cut edge, respectively.

C4
4

Figure 4. A Cc
n−c graph for n = 8 and c = 4.

Theorem 4. Let G ∈ Ω(n, c) and 1 ≤ c ≤ n− 3, then for γ < 0 we have:

0Rγ(G) ≤ c + (n− c− 1)2γ + (c + 2)γ

and the equality holds if and only if G = Cc
n−c.

Proof. Suppose that the graph G ∈ Ω(n, c) has the maximum zeroth-order general Randić index,
for γ < 0, with cut edge set C = {e1, e2, . . . , ec}. To prove the main result we first prove two claims.

Claim 1. Let e ∈ C, then e must be a pendant edge.
Proof of Claim 1. On contrary suppose that e1 = u1v1 is a non-pendant edge in G such that

dG(u1) ≥ dG(v1) > 1. Suppose that NG(v1)\{u1} = {v11, v12, . . . , v1t}. Now we compose a graph:

G∗ = G− {v1v11, v1v12, . . . , v1v1t}+ {u1v11, u1v12, . . . , u1v1t}.
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Clearly, G∗ ∈ Ω(n, c). Since e1 is a cut edge in G, so NG(v1)\NG[u1] = {v11, v21, . . . , vt1}. Then by
Lemma 2 and the case when u1 and v1 are adjacent we have 0Rγ(G∗) > 0Rγ(G), which opposes the
maximality of G.

Claim 2. The edges of C have a common vertex.
Proof of Claim 2. From above all the edges ei, 1 ≤ i ≤ c are pendant. On contrary suppose

that e1 = u1v1 and e2 = u2v2 are two distinct edges in G such that dG(ui) = 1 for i ∈ {1, 2} and
v1 6= v2. By applying Lemma 2 on v1 and v2, we obtain a new graph G∗∗ ∈ Ω(n, c) such that
0Rγ(G∗∗) > 0Rγ(G), which is a contradiction.

Claim 2 implies that G is a graph attained by joining c pendant vertices to one vertex, say v0 of
G0 where G0 is a connected graph without cut edges. Considering that in G0 any vertex has degree
greater or equal to 2, we have:

0Rγ(G) = ∑
w∈V(G0)\{v0}

(dG0(w))γ + (dG0(v0) + c)γ + c ≤ (n− c− 1)2γ + (c + 2)γ + c

and the equality holds if and only if dG0(v) = 2 for each v ∈ G0, i. e., G0 = Cn−c. Equivalently,
G = Cc

n−c and we are done.

4.3. Extremal Graphs w.r.t. 0Rγ in Terms of Vertex (Edge) Connectivity

The set of all graphs of order n having connectivity and edge-connectivity equal to c ≤ n− 1 is
denoted by Vc

n and Ec
n, respectively.

Theorem 5. For any graph G ∈ Vc
n with 1 ≤ c ≤ n− 1 and −1 ≤ γ < 0, we have:

0Rγ(G) ≥ c(n− 1)γ + (n− c− 1)(n− 2)γ + cγ

with equality holding if and only if G = Kc + (Kn1 ∪ Kn2) with n1, n2 ≥ 1 and n1 + n2 = n− 1 for c = 1
and γ = −1 and G = Kc + (K1 ∪ Kn−c−1) for c = 1 and −1 < γ < 0 or c ≥ 2.

Proof. Suppose G ∈ Vc
n is a graph with minimal 0Rγ(G) with c-vertex cut S = {v1, v2, . . . , vc}.

By Lemma 1 (2), the induced subgraph G[S] is a complete graph Kc.
For c = n− 1, there is a unique graph Kn in the set Vc

n , which can be deal as a special case of
G = Kc + (K1 ∪ Kn−c−1) with c = n− 1. So, in what follows we shall consider 1 ≤ c ≤ n− 2.

Claim 1. G− S has exactly two components.
Proof of Claim 1. On contrary suppose that G− S has at least three components G1, G2, and G3

having ui ∈ V(Gi) for i = 1, 2. Then we find G + u1u2 ∈ Vc
n , which implies 0Rγ(G + u1u2) <

0Rγ(G),
which contradicts the choice of G. Now we assume that G− S = G1 ∪ G2, where G1 and G2 are the
components of G− S. From Lemma 1 (2), we conclude that G1 and G2 are cliques and each vertex in S
is adjacent to all vertices in G1 ∪G2. Consequently, we get G = Kc + (Kn1 ∪Kn2) where n1 + n2 = n− c.

Without loss of generality, assume that n1 ≤ n2 in G = Kc + (Kn1 ∪ Kn2). We get:

0Rγ(G) = c(n− 1)γ + n1(n1 + c− 1)γ + n2(n2 + c− 1)γ.

For c = 1 and γ = −1, we have 0Rγ(G) = 1
n−1 + 2 for any graph G of the form G = Kc + (Kn1 ∪

Kn2) with 1 ≤ n1 ≤ n2 ≤ n− 2 and n1 + n2 = n− 1. For c ≥ 2 or −1 < γ < 0 we require the least
value of the following function:

f (n1, n2) = n1(n1 + c− 1)γ + n2(n2 + c− 1)γ,

where 1 ≤ n1 ≤ n2 ≤ n− c− 1 and n1 + n2 = n− c.
From Lemma 4 we deduce that the f (n1, n2) is minimal when n1 = 1 and n2 = n− c− 1 for

n1 + n2 = n− c. Hence 0Rγ(G) attains its minimum value if and only if G = Kc + (K1 ∪ Kn−c−1).
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Let ψ(x) = xγ + (n − x − 1)(n − 2)γ + x(n − 1)γ for x > 0 and γ < 0, we have: ψ′(x) =

γxγ−1 − (n− 2)γ + (n− 1)γ < 0. This implies that ψ(x) is strictly decreasing for x > 0. Therefore,
we have

0Rγ(Ki + (K1 ∪ Kn−i−1)) <
0Rγ(Ki−1 + (K1 ∪ Kn−i)) (3)

for 2 ≤ i ≤ c.
Considering that Vn,c = ∪c

i=1Vi
n, by Theorem 5 and inequality 3, we have the following result:

Theorem 6. For any graph G ∈ Vn,c with 1 ≤ c ≤ n− 1 and −1 ≤ γ < 0, we have:

0Rγ(G) ≥ cγ + (n− c− 1)(n− 2)γ + c(n− 1)γ

and equality holds if and only if G = Kc + (Kn1 ∪ Kn2) with n1, n2 ≥ 1 and n1 + n2 = n− 1 for c = 1 and
γ = −1 and G = Kc + (K1 ∪ Kn−c−1) for c = 1 and −1 < γ < 0 or c ≥ 2.

As κ(G) ≤ κ′(G) we have Ec
n ⊆ Vn,c. We get Kc + (K1 ∪ Kn−c−1) ∈ Ec

n for c ≥ 1 but K1 + (Kn1 ∪
Kn2) /∈ E1

n if 1 < n1 ≤ n2 with n1 + n2 = n− 1. From Theorem 6 we deduce the following corollary:

Corollary 1. For any graph G ∈ Ec
n with 1 ≤ c ≤ n− 1 and −1 ≤ γ < 0, we have:

0Rγ(G) ≥ cγ + (n− c− 1)(n− 2)γ + c(n− 1)γ

and equality holds if and only if G = Kc + (K1 ∪ Kn−c−1).

Again using inequality 3 and the inequalities κ(G) ≤ κ′(G) ≤ δ(G), we have the
following corollary:

Corollary 2. Let G be a connected graph of order n and minimum degree δ(G) = c, then for −1 ≤ γ < 0
we have:

0Rγ(G) ≥ cγ + (n− c− 1)(n− 2)γ + c(n− 1)γ

and the equality achieved if and only if G = Kc + (K1 ∪ Kn−c−1).

We can see that En,c = ∪c
i=1Ei

n. From Corollary 1 and inequality (3), we can obtain the
subsequent result:

Theorem 7. For any graph G ∈ En,c with 1 ≤ c ≤ n− 1 and −1 ≤ γ < 0, we have:

0Rγ(G) ≥ cγ + (n− c− 1)(n− 2)γ + c(n− 1)γ

with equality holding if and only if G = Kc + (K1 ∪ Kn−c−1).

One can notice that for each edge e ∈ E(G), where G ∈ Vn,c (respectively En,c), G− e also belongs
to Vn,c (respectively En,c). From [42] we know that Sn has the maximal index 0Rγ among all trees of
order n for γ < 0 since the function ϕ(x) = (x + 1)γ − xγ is strictly increasing for x > 0 if γ < 0.
So from Lemma 2 (ii) we have the following consequences:

Theorem 8. For any graph G ∈ Vn,c with 1 ≤ c ≤ n− 1 and γ < 0, we have:

0Rγ(G) ≤ (n− 1) + (n− 1)γ

and the equality holds if and only if G = Sn.
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Theorem 9. For any graph G ∈ En,c with 1 ≤ c ≤ n− 1 and γ < 0, we have:

0Rγ(G) ≤ (n− 1) + (n− 1)γ

and the equality holds if and only if G = Sn.

5. Conclusions

Finding bounds on any topological index with respect to different graph parameters is an
important task. Authors in [41], investigated the upper and lower bounds on inverse degree index,
ID(G) = ∑u∈V(G) d(u)−1. They investigated the bounds in terms of connectivtiy, chromatic number,
number of cut edges, and clique number. We extend their results for zeroth-order general Randić
index, 0Rγ(G) = ∑u∈V(G) d(u)γ, and showed that the same bounds holds when γ < 0. The extremal
graphs for each bounds are also investigated. The results in [41] can be found as corollaries of our
main results for γ = −1.
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36. Fajtlowicz, S. On conjectures of graffiti II. Congr. Numer. 1987, 60, 189–197.
37. Hu, Y.; Li, X.; Shi, Y.; Xu, T. Connected (n, m)-graphs with minimum and maximum zeroth-order general
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