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A B S T R A C T

In self-mixing interferometry, the fast and accurate estimation of fundamental feedback parameters, such as
optical feedback coupling factor 𝐶 and linewidth enhancement factor 𝛼, is critical for high-resolution real-time
displacement sensing using an SMI sensor.

In this work, a Marquardt’s algorithm (MA) based fast and highly accurate method is proposed to estimate
𝐶 and 𝛼. The proposed method utilizes the SMI signal phase and applies a simple numerical analysis to estimate
𝐶 and 𝛼. The proposed method can accurately estimate 𝐶 and 𝛼 for all three major feedback regimes (i.e.,
week, moderate and strong). A detailed comparison is also made with previously proposed algorithms to show
the superiority of the proposed algorithm in terms of initial conditions, number of iterations, accuracy, and
ability to work under all feedback regimes. The results have shown that our method has a negligible average
error of around 0.0023 and 0.0006 for 𝐶 and 𝛼 estimation, respectively. The proposed method only requires
approximately five iterations for accurate estimation. The method’s simplicity, accuracy, and fast nature enable
compact and cost-effective SMI sensors with high-resolution real-time displacement sensing.
. Introduction

Self-mixing interferometry (SMI) [1,2] has been extensively ap-
lied in a range of measurement applications. Those applications in-
ludes displacement [3], velocity [4], vibration [5], angle [6], temper-
ture [7], fluid flow rate [8], distance [9], phase [10] and refractive
ndex [11] measurement etc. Unlike typical interferometry setup [12],
MI based sensor setup is cost-effective, compact, and self-aligned. It
oes not involve additional apparatuses like reference mirrors, beam
plitters, or external photodetectors [1,2]. SMI signal is processed using
ost-processing algorithms [13] or phase unwrapping techniques [14–
9] to extract desired target motion.

Usually, phase unwrapping methods (PUM’s) [15–19] involve two
teps processing, i.e., (1) rough phase retrieval, (2) joint estimation of
undamental optical feedback parameters of SMI laser sensor known
s optical feedback coupling factor (C), and linewidth enhancement
actor (𝛼) [16]. 𝐶 and 𝛼 are responsible for the regime and shape of the
MI signal [16]. Accurate estimation of 𝐶 and 𝛼 is essential for high-
esolution displacement measurement because the measurement reso-
ution of the SMI sensor largely depends on 𝐶 and 𝛼 estimation [18].
ased on the 𝐶 value, the SMI signal can be distributed into three major
egimes, i.e., weak feedback regime (C<1), moderate feedback regime
1<=C<=4.6), and strong feedback regime (C>4.6) [20].

∗ Corresponding author.
E-mail address: saqib.amin@Riphah.edu.pk (S. Amin).

Therefore, many methods and techniques are used for 𝐶 and 𝛼 es-
timation leading to the measurement of target motion [13–16,21–26].
These methods can be categorized into two methods, i.e., optimization
methods and SMI features (SMIF) based direct estimation methods.
SMIF based methods [13,25,26] are faster than optimization-based
methods, but they are only designed for specific feedback regimes and
cannot process all three feedback regime signals. On the other hand,
optimization-based methods [14–16,18,21–24] can process signals ir-
respective of their feedback regime to estimate 𝐶 and 𝛼 values. Some
of these methods are briefly discussed below.

Zabit [21] proposed a Nelder–Mead (NM) based method to accel-
erate the process of 𝐶 𝛼 joint estimation and provide accurate 𝐶 𝛼
values for displacement retrieval. However, this method is compute-
intensive and iterative. It cannot be deployed without using particular
architecture or FPGA [25,27–30], compromising the cost-effectiveness
and defying the real-time nature of the SMI based displacement sensing
system. This method takes around 53 iterations for the joint estimation
of 𝐶 and 𝛼. Likewise, Fan [23] proposed a relatively more straight-
forward method for estimating 𝐶 and 𝛼. The proposed method takes
less than 11 iterations to estimate feedback parameters. Nevertheless,
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Fig. 1. Basic SMI set up for displacement retrieval.
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his method was time-consuming and required many iterations to con-
verge to optimum values, making it unsuitable for real-time low-cost
displacement sensing.

Similarly, Yu et al. [31] proposed a much simpler and faster 𝛼 esti-
mation method than the previous two methods [21,23]. In the proposed
method, analytical expressions for the phase segments were derived,
and their graphical solution resulted in 𝛼 estimation. The Results have
shown an accuracy of ±6.5%. Accordingly, Ahmed et al. [22] proposed
a modified Newton (MN) method-based approach to estimate 𝐶 and 𝛼
values quickly. The proposed Newton-based approach utilizes quadratic
convergence to find an optimum solution to a nonlinear problem, which
speeds up the estimation process. However, the proposed method is
highly dependent on the initial guess of 𝐶 and 𝛼 values and may
lead to high inaccuracy or even instability in some cases. Also, an
increased number of iterations is required to converge if initial guesses
are away from actual values, increasing computations and added time
for estimating 𝐶 and 𝛼 parameters. This method takes less than 30
iterations to estimate 𝐶 and 𝛼 values.

In the context of SMIF based approach for 𝐶 𝛼 estimation, Kim
et al. [26] proposed a method based on features of SMI signal for
𝐶 and 𝛼 estimation. The proposed method utilizes the information of
phase jumps, zero-crossing points, and peak points and applies alge-
braic operations to estimate 𝐶 and 𝛼. Similarly, Chol-Man et al. [25]
also proposed the SMI signal features-based method, where first-order
Taylor approximation was applied to obtain mathematical relations for
𝐶 and 𝛼 estimation. The proposed method does not require iterations,
and 𝐶 𝛼 estimation can be made utilizing relations obtained from the
Taylor approximation. However, both proposed methods can only work
under moderate or strong feedback regimes and cannot process week
feedback regime signals for 𝐶 𝛼 estimation.

Similarly, Kim [13] also proposed another SMIF signal features-
based method for 𝐶 estimation using zero-crossing points, fringes, and
max/min points of the SMI features. The proposed method has an
average error of 0.02 in the estimated 𝐶 value. However, this method
is only designed for a week feedback regime and does not process
moderate and strong feedback regime signals.

Likewise, in an optimization-based approach, Hussain et al. [24]
propose a Zynq FPGA-based interferometry sensor system architecture
(ISSA) for displacement retrieval using an improved phase unwrapping
method (IPUM) [16]. For estimation of 𝐶 and 𝛼, 10,000 iterations based
brute force technique (BFT) [32] was used, where 𝐶 was varied from 0
to 5 and 𝛼 was varied from 0 to 10 in search of an optimum solution.
FPGA provided parallel and concurrent execution of the brute force
algorithm, resulting in fast and accurate estimation of 𝐶 and 𝛼 to at
least one decimal point. However, the cost-effective nature of SMI is
comprised. Similarly, Hussain et al. [18] proposed a parallel hybrid ap-
proach to implement IPUM [16] in another work. Again, a brute-force
algorithm with 20,000 iterations was used for 𝐶 and 𝛼 estimation. The
Nord-III supercomputing system was used for parallelization. The task
was divided into multiple nodes, resulting in fast real-time processing
of IPUM for displacement retrieval. The real-time constraints were met,
but the overall cost of the system was significant due to the utilization

of high computational resources.

2

Thus, most optimization-based methods are time-consuming and
complex and require many iterations and computation power to per-
form 𝐶, 𝛼 estimation. This increases the overall setup cost due to the
utilization of particular architectures [18,24] and restricts the accuracy
and real-time sensing due to the number of iterations required to esti-
mate 𝐶 and 𝛼. On the other hand, SMIF based methods do not require
iterations, but they require processing extracting features from SMI
signals. Furthermore, SMIF based methods can only process specific
feedback regime signals for which they are designed.

So, there is a need for such a method, which can perform 𝐶 and
𝛼 estimation with high accuracy and minimum processing time and
can process signals from all feedback regimes. Thus, this work aims to
propose a fast and highly accurate 𝐶 and 𝛼 estimation method working
under different feedback regimes.

The rest of the paper is organized as follows: the following section
describes the SMI fundamentals and illustrates MA processing with the
help of a block diagram. Then, Section 3 presents detailed simulated
results, while Section 4 presents experimental results, followed by the
conclusion.

2. SMI fundamentals and proposed methodology

This section is further divided into two subsections, namely, (1)
SMI fundamentals: explaining the fundamental concept of SMI, and (2)
MA Based Proposed Method: explaining MA processing for 𝐶 and 𝛼
estimation in detail.

2.1. SMI fundamentals

A basic understanding of SMI is required to realize the importance
of 𝐶 and 𝛼 values in displacement retrieval using the SMI sensor
and the proposed Marquardt’s algorithm (MA) based method for their
estimation. Fig. 1 shows an example of a typical SMI setup that utilizes
a laser package composed of a laser diode (LD) and a photodiode (PD).
In this setup, the target surface is a piezoelectric transducer (PZT).
The focusing lens is responsible for focusing the laser beam on the
target surface. The received optical output power (OOP) or SMI signal
P(t) [1,2] at the sensor’s output is then processed using some algorithm
or PUM [15–17] for the retrieval of target displacement D(t). P(t) [33]
can be represented as:

𝑃 (𝑡) = 𝑃0 ∗ [1 + 𝑚 ∗ 𝑐𝑜𝑠(𝜙F(𝑡))] (1)

𝑃0 represents the optical output power under free-running conditions,
m is the modulation index, and 𝜙 F(t) denotes the external laser cavity
eedback phase linked with target motion. Assume that is the fixed
istance between the laser sensor and the stationary target surface.
f the target surface is moving along the axis of the sensor with a
isplacement D(t) and let 𝑑0 is the fixed distance between the sensor

and stationary target surface, then 𝜙F(𝑡) [17] can be given as:

𝜙F (𝑡) = 4𝜋 ∗
𝑑(𝑡) (2)

𝜆F(𝑡)
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Where 𝜆F(t) is the emission wavelength of the laser diode under feed-
ack conditions, and d(t) is the instantaneous distance between the

target surface and the SMI sensor. 𝑑(𝑡) can be represented as [16]:

𝑑 (t) = 𝑑0 +𝐷 (𝑡) =
𝜆0
4𝜋

∗ 𝜙0(𝑡) (3)

Where 𝜆0 is emission wavelength of laser under free-running condition,
nd 𝜙0(𝑡) is the actual or clean laser phase associated with target motion
(t) [16]. 𝜙0(𝑡) can be found using the so called phase equation given
y the relation [15]:

0 (𝑡) = 𝜙F (𝑡) + 𝐶 ∗ 𝑠𝑖𝑛(𝜙F (𝑡) + arctan(𝛼)) (4)

rom Eq. (3), 𝐷(𝑡) is directly dependent on the accurate value of 𝜙0(𝑡),
nd from Eq. (4), the accuracy of 𝜙0 (𝑡) is dependent on values of
undamental SMI feedback parameters C and 𝛼. Value of 𝐶 factor relay
n the reflectivity of the target surface and the relative distance be-
ween the SMI sensor and target surface [16]. On the other hand, the 𝛼
arameter purely relies on intrinsic properties of the laser beam, such as
roadening of laser beam spot and variation in frequency (chirp) [34].
oth these parameters also play an essential role in the shape of the
MI signal. The inclination of SMI fringes [20] is dependent on the 𝛼
arameter, while the C parameter is responsible for the shape of the
MI signal. An increase in 𝐶 value changes the shape of SMI fringes
rom quasi sinusoidal shape to sawtooth-like shape. The SMI signal
an be categorized into three distinct feedback regimes based on the 𝐶
alue, namely weak feedback regime (C≤1), moderate feedback regime
1<C≤4.6), and strong feedback regime (C>4.6) [35].

Accurate estimation of both of these parameters is essential in the
ccurate estimation of 𝜙0(𝑡), which leads to target displacement 𝐷(𝑡).
hus, any error in estimating 𝐶 and 𝛼 will lead to the inaccurate 𝐷(𝑡)
easurement. Similarly, if the estimation of 𝐶 and 𝛼 is slow, then the

verall process of displacement sensing will also get slower. So, there
s a requirement for an accurate and fast estimation method for 𝐶
nd 𝛼 estimation to improve the accuracy of displacement sensing and
ake it suitable for real-time sensing. The proposed fast and accurate

stimation method is explained next.

.2. MA based proposed method

As previously discussed, there are two types of 𝐶 and 𝛼 estimation
echniques, i.e., optimization techniques and SMIF based techniques.
he optimization methods can process different feedback regime signals
ut are slow due to iterative routines. On the other hand, SMIF methods
re faster than previously proposed optimization methods, but they
re only designed for a specific regime’s SMI signals. Thus, a fast and
ighly accurate optimization-based method is proposed here, which can
rocess all three major feedback regime signals.

The proposed method utilizes the Marquardt optimization algorithm
MA) [36] to estimate 𝐶 and 𝛼. MA works on least square error
inimization and combines gradient descent optimization and Gauss–
ewton optimization methods [36]. The gradient descent method uses

he steepest-descent direction to update the parameters to minimize
he sum of the square of the error value of a function. So, in the
ase of initial guess of parameters is far from actual values. The
radient descent method will quickly converge to optimum values due
o updating parameters in steepest-descent direction [36]. At the same
ime, convergence will be very slow when parameters approach actual
alues due to the limitation of the only gradient-based steepest-descent
irection movement. On the other hand, the Gauss–Newton method
s a quadratic optimization approach, where parameters are consid-
red locally quadratic, and parameter updating is done by finding a
inimum of quadratic. Gauss–Newton performs well when the initial

uess of parameters is close to actual values while requiring more
terations when the initial guess of parameters value is far from actual
alues [36].
 a

3

MA utilizes both the gradient descent method and Gauss–Newton
ethod intelligently, increasing the speed of optimization and esti-
ation accuracy. MA can estimate 𝐶 and 𝛼 accurately in both cases,

.e., when the initial guess is close to the actual value or is much further
rom the actual value. A Flowchart of MA-based proposed processing
ethodology is presented in Fig. 2.

MA finds the optimum solution for 𝐶 and 𝛼 by minimizing the
um of the least square error cost function (𝐽 (𝐶, 𝛼)), where 𝐽 (𝐶, 𝛼) is
alculated using the following approach.

Let 𝜙0(𝑛), 𝑛∈𝑁 is a discrete version of 𝜙0(𝑡), then Eq. (4) becomes:

0 (𝑛) = 𝜙F (𝑛) + 𝐶 ∗ 𝑠𝑖𝑛(𝜙F (𝑛) + arctan(𝛼)) (5)

lso,

0 (𝑛 − 1) = 𝜙F (𝑛 − 1) + 𝐶 ∗ 𝑠𝑖𝑛(𝜙F (𝑛 − 1) + arctan(𝛼)) (6)

urthermore, error 𝐸(𝑛) can be calculated using the relation:

(𝑛) = 𝜙0 (𝑛) − 𝜙0 (𝑛 − 1) (7)

hen the sum of the square of error or cost function 𝐽 (𝐶, 𝛼) will be:

(𝐶, 𝛼) =
𝑁
∑

𝑛=0
[𝐸(𝑛)]2 =

𝑁
∑

𝑛=0
[𝜙0 (𝑛) − 𝜙0 (𝑛 − 1)]2 (8)

A processing begins with the initial input parameters, where 𝛽 is
n array of coefficients to control the damping parameter (𝜇) value
equired during optimization. M is for a maximum number of iterations.
t the same time, 𝐺tlr is the minimum desired norm of the slope

olerance value. 𝑋 = [𝐶in, 𝛼in] is the initial guess of 𝐶 and 𝛼 values.
nlike the NM method [21], Newton method [22], or gradient descent
ethod, MA performance is not affected by an initial guess. It can

onverge to an optimal solution even in the case of a very rough initial
uess. At the beginning of each iteration, 𝐶K and 𝛼K values are used
o process 𝐽 (𝐶, 𝛼) to compute the current cost function value 𝐹1 and
radient 𝐺. Based on the norm of gradient ‖𝐺‖, either MA is terminated
r moved to second gradient 𝐺1 stage.

During each iteration, MA calculates a search direction (𝑆) using
q. (9), computes new values of 𝐶 and 𝛼 according to 𝑆 using Eq. (10),
nd finds the value of the function 𝐽 (𝐶, 𝛼) (𝐹2) for these updated values.

=
𝐺1

[𝐺 + 𝜇 ∗ 𝐼]
(9)

here G and 𝐺1 are the first and second gradients of function 𝐽 (𝐶, 𝛼),
espectively, while ‘‘I’’ is the identity matrix with dimensions equal to
*2 (number of parameters to be estimated), using 𝑆, values of 𝐶 and
in search direction will be:

𝑆 = 𝑋𝐾 + 𝑆 (10)

here 𝑋K is 𝑋 = [𝐶, 𝛼] at 𝑘th iteration, if the square of the sum of error
ecreases in an iteration compared to the previous iteration, i.e., 𝐹2
𝐹1, this indicates a search in the right direction. As a result, 𝜇 is

ecreased by a factor of 𝛽 [1], and 𝑋 = [𝐶, 𝛼] is updated with 𝑋S, and
A behaves as Gauss–Newton method. On the other hand, 𝐹2 > 𝐹1

ndicates the wrong search direction, resulting in an increase in 𝜇 by
factor of 𝛽 [2], and MA behaves like a gradient descent method. MA
rocessing concludes when desired 𝐺tlr level is achieved or maximum
llowable iterations are reached.

. Simulation results

MATLAB-based simulations were performed to assess the effective-
ess of the proposed algorithm. Firstly, variety of SMI signals P(t)
nd the associated phase 𝜙F(𝑡) were generated for variable 𝐶 and 𝛼
alues. SM simulator was used, and It was considered that, target moves
ith harmonic motion with a frequency 𝐹 = 3 Hz, and peak to peak
mplitude 𝐴 = 2.6𝜆 . Then proposed MA was evaluated for 𝑁 = 50 K
0
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samples of 𝜙𝐹 (𝑡) under different initial conditions of parameters using
simulated signals having diverse 𝐶 and 𝛼 values.

The performance of the proposed MA was also compared with
reviously implemented and commonly used optimization methods,
.e., NM [16,21], MN [22], and Steepest descent (SD) [37] methods.
𝐹 (𝑡) with 𝐶 = 0.2 and 𝛼 = 5 was chosen for the comparison purpose.
wo cases of comparison are presented in Fig. 3 and Fig. 4 respectively.
ig. 3 presents the case of choosing an initial guess near to the actual
arameter values. In contrast, Fig. 4 presents the opposite case with the
nitial guess of parameters away from actual values.

From Fig. 3, for a signal with actual parameter values 𝑥 = [0.25],
nitial guess was chosen as 𝑥0 = [1–4]. Fig. 3(1) represents the cost
unction (error function) values during each iteration for the proposed
A 𝐽MA. The purpose of MA is to find the best combination of 𝐶, 𝛼 to
inimize the error function 𝐽MA. The proposed MA was able to estimate

ctual values in only five iterations, and the final minimum possible
alue of 𝐽MA was 4.355. (note: All the J values in Figs. 3 and 4 were
alculated using Eq. (8), and then obtained results were multiplied by
000 for a better graphical representation). MN performance was also
omparable, taking seven iterations to estimate the parameters with
lightly lesser accuracy. NM accuracy was also comparable with the
roposed MA method. However, the NM method took 35 iterations
o estimate the values. SD lagged behind all the algorithms with the
oorest performance, as it took 240 iterations and accuracy was also
ow.

Similarly, in Fig. 4, an away initial guess of 𝑥0 = [6 6] was chosen
or the same conditions mentioned in the previous case in Fig. 3.
gain, the proposed MA estimated actual values in only six iterations
ith higher accuracy than other methods. NM accuracy was again
4

omparable with the proposed MA method. However, like the last case,
M was slow in convergence and took 45 iterations to estimate the
alues. On the other hand, the SD method remained consistent in terms
f poor accuracy and slow convergence, taking 239 iterations. The most
nteresting results were observed in the MN method, where NM could
ot converge and become unstable even after the 2nd iteration. It is
ue to the inherent issue with MN working well in local minimization,
.e., when the initial guess is close to the actual value, and may
ail to converge when the initial guess is far away from the actual
alue [36]. Based on the results in Figs. 3 and 4, the proposed MA
ethod has shown dominance over other algorithms regarding the
umber of iterations (speed) and accuracy.

Table 1 presents detailed simulated results for 𝐶 𝛼 estimation. 𝐶
as varied from 0.01 to 7, while 𝛼 was varied from 0.5 to 5. Initial
arameter values 𝑥0 = [C0, 𝛼0] was chosen [1 1]. From Table 1,
he average estimation error in 𝐶 and 𝛼 was 0.0023 and 0.0006,
espectively. MA took less than six iterations on average to converge
nd estimate parameters with high accuracy.

The influence of noise on the proposed MA method was also ob-
erved by adding additive white Gaussian noise (AWGN) to simulated
F(𝑡). Different signal-to-noise ratio (SNR) levels, i.e., 30 dB, 20 dB and
0 dB were chosen to observe the performance of MA. The approximate
rror in 𝐶 estimation was 0.002, 0.021 and 0.086 for 30 dB, 20 dB
nd 10 dB respectively. Similarly, approximate error in 𝛼 estimation
as 0.0007, 0.032 and 0.094 for 30 dB, 20 dB and 10 dB respectively.
he estimation performance of MA further degrades when SNR drops
elow 10 dB, such signals can be preprocessed using noise reduction
ethods [38–40] to improve the SNR value.

Extensive simulations were carried out for the different combina-
ions of 𝐶 and 𝛼 values to compare MA with existing optimization
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(

Fig. 3. Performance Comparison of estimation algorithms for initial guess near to actual parameter values. Figure shows minimization performed using (a) proposed MA (𝐽MA),
(b) NM [16,21] (𝐽NM), (c) SD [37] (𝐽SD), (d) MN [22] (𝐽MN), 𝐶 estimation using (e) proposed MA (𝐶MA), (f) NM (𝐶NM), (g) SD (𝐶SD), (h) MN (𝐶MN) and 𝛼 estimation using (i)
proposed MA (𝛼MA), (j) NM (𝛼NM), (k) SD (𝛼SD), (l) MN (𝛼MN).
Fig. 4. Performance Comparison of estimation algorithms for initial guesses away from actual parameter values. Figure shows minimization performed using (a) proposed MA
(𝐽MA), (b) NM (𝐽NM), (c) SD (𝐽SD), (d) MN (𝐽MN), 𝐶 estimation using (e) proposed MA (𝐶MA), (f) NM (𝐶NM), (g) SD (𝐶SD), (h) MN (𝐶MN) and 𝛼 estimation using (i) proposed MA
𝛼MA), (j) NM (𝛼NM), (k) SD (𝛼SD), (l) MN (𝛼MN).
5
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q
a

Fig. 5. Experimental Setup.
Table 1
Simulated results of 𝐶 𝛼 estimation using proposed MA method for initial value 𝑥0=
[1 1].

Sr. No. Actual values Estimated
values

Error in
estimation

No. of
iterations

C A Cest 𝛼est Cerr 𝛼err
1 0.01

0.5
0.016 0.499 0.006 0.001 5

2 0.4 0.407 0.500 0.007 0.000 3

3 0.8
1

0.804 1.000 0.004 0.000 2
4 1.6 1.600 1.000 0.000 0.000 5

5 2.0
1.5

2.000 1.499 0.000 0.001 5
6 2.8 2.800 1.500 0.000 0.000 5

7 3.2
2.5

3.200 2.495 0.000 0.005 5
8 4.0 4.000 2.500 0.000 0.000 3

9 4.4
3.5

4.399 3.499 0.001 0.001 7
10 5.2 5.199 3.500 0.001 0.000 5

11 5.6
4.5

5.596 4.500 0.004 0.000 6
12 6.4 6.395 4.500 0.005 0.000 6

13 7 5 6.994 5.000 0.006 0.000 8

Average estimation error 0.0023 0.0006

Average number of iterations 5

methods and SMIF based methods [13,25,26]. The execution time of
algorithms was also calculated to compare the speed of optimization
methods for the IPUM [16] based Displacement retrieval. For this
purpose, 50 K samples of SMI signal were processed using MATLAB on a
personal computer (PC) having a 2.40 GHz i5-5th Generation processor.
The speed of execution is dependent on both the processing system and
the complexity of an algorithm. The originally published IPUM [16]
is based on NM-based optimization and takes approximately 3.5s for
displacement retrieval. SD [37] based IPUM took 4.3s for displacement
retrieval, while BFT [18] based IPUM took 21.3s for displacement
retrieval. Lastly, the proposed MA optimization-based IPUM took only
2.4s for displacement retrieval.

It was also observed that the optimization methods work under
all three major feedback regimes with a lot of time consumption in
iterative routines. MN [22] consumes approximately seven iterations
and has an error of approximately 0.003 in C estimation. However,
as previously discussed, MN can only minimize locally and fails to
converge when the initial guess is not chosen close to actual parameter
values. BFT [18] was most time-consuming as it requires 20 K iterations
to estimate parameters.

Furthermore, the accuracy of BFT [18] is also low, having an
approximate error of 0.099 in C estimation. More iterations are re-
uired to improve the accuracy. Similarly, NM [16,21] method took
pproximately 39 iterations to approximate 𝐶 and 𝛼, while SD [37]

took approximately 120 iterations and it failed to converge for higher
values of 𝐶 and 𝛼.
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On the other hand, SMIF based methods only worked under specific
feedback regimes, like Chol-Man [25] method only works for 𝐶>1,
Kim [26] works for 𝐶>1.5, and Kim [13] works only under a weak
feedback regime with 𝐶<=1, thus limits the use of SMIF based meth-
ods compared to MA-based methods. Chol-Man [25], Kim [13] and
Kim [26] methods have 0.038, 0.012 and 0.08 average approximate
errors in 𝐶 estimation. Therefore, the accuracy of SMIF based methods
is also low as compared to the proposed MA.

4. Experimental results

The proposed MA is tested using experimental SMI signals under
different optical feedback regimes, linewidth enhancement factors, and
target motion conditions. The schematic diagram of the SMI setup used
to acquire SMI signals is shown in Fig. 5. A metal target is mounted on
a PASCO SF-9324 mechanical wave driver (MWD). A GWINSTEK AFG-
2225 Function generator is used to excite the target surface at different
peak to peak amplitudes and frequencies ranging from 0.1 Hz – 5 KHz
with the help of MWD. SMI sensor equipped with a 𝜆0 = 658 nm 75 mA
threshold current Hitachi HL6501MG LD emitting at 35 mW of optical
output power is used to acquire SMI signal. A GWINSTEK GDS2204E
Oscilloscope is connected to the electronic circuitry of the SMI sensor
to observe the acquired signal P(t). P(n) (digital form of P(t)) signal
is transferred to a personal computer (PC) for further processing using
MATLAB.

Before applying the proposed MA method, P(n) is processed using
IPUM [16] based technique to obtain 𝜙F(𝑛), which is then processed
using MA to estimate 𝐶 and 𝛼. MA was tested for a large variety of SM
signal having different amplitudes and 𝐶 values ranging from 0.1 to
10. Table 2 presents experimental signal based results for 𝐶 estimation
(𝐶̂) and 𝛼 estimation (𝛼̂) using proposed MA. For baseline comparison,
obtained results are compared with NM method [16,21] and other op-
timization methods discussed in the previous section. From the results
in Table 2, the accuracy of SD [37] and MN [22] is poor compared
to other algorithms. While the BFT [18] based method is the slowest,
consuming 20 K iterations. NM [16] accuracy is comparable with MA.
However, it consumes much higher iterations than the proposed MA
method.

Furthermore, the results show that the MA method can work for
all three major feedback regimes, i.e., week, moderate and strong.
However, in the case of a strong feedback regime (c>4.6), SMI fringes
start to disappear [20], also affecting the estimation of 𝜙F(𝑛) using
IPUM [16]. As 𝜙F(𝑛) was processed to obtain the results presented in
Table 2, so error in 𝜙F(𝑛) also effects 𝐶, 𝛼 estimation. Simulations were
carried out using simulated signals with known 𝐶 value with 30 dB SNR
to quantify the error performance for further increase in 𝐶 value. For
SMI signal with 𝐶 = 5, 6, 7, 8 and 9 approximate error in 𝐶 estimation
was 0.002, 0.016, 0.058, 0.473 and 0.875 respectively.

Additionally, the performance of MA was also observed for different
target amplitudes, and it was found that MA can work for SMI signals
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Table 2
MA performance comparison with other methods for experimental SM signals.
Sr. No. Amplitude (μm) Target frequency (Hz) MA NM [16] MN [22] SD [37] BFT [18]

𝐶̂ 𝛼̂ Itr 𝐶̂ 𝛼̂ Itr 𝐶̂ 𝛼̂ Itr 𝐶̂ 𝛼̂ Itr 𝐶̂ 𝛼̂ Itr

1 5 90 0.762 4.96 5 0.762 4.93 52 0.767 4.65 8 0.781 3.86 178 0.750 4.90

20K

2 1.20 40 0.912 4.98 4 0.909 4.73 57 0.914 4.66 7 0.922 4.24 135 0.900 4.90
3 1.65 50 1.270 5.07 3 1.269 5.16 57 1.343 4.65 9 1.269 4.18 79 1.250 5.10
4 5 160 1.350 5.03 3 1.351 5.04 57 1.363 4.66 11 1.347 4.42 79 1.350 5.10
5 5 200 1.859 5.02 4 1.861 5.03 54 1.847 4.65 13 1.859 5.05 81 1.850 5.10
6 5 45, 90, 225, 315 2.020 4.97 5 2.014 4.98 55 Nan Nan Nan 2.027 5.49 77 2.000 5.00
7 5 90 2.069 4.99 5 2.067 5.05 55 Nan Nan Nan 2.072 4.52 80 2.050 5.00
8 5 70, 210 2.390 5.01 5 2.387 4.94 54 Nan Nan Nan 2.394 4.99 81 2.400 5.00
9 2.5 70 2.559 5.06 5 2.559 5.07 50 Nan Nan Nan 2.557 4.95 71 2.550 5.00
10 5 90 3.488 5.02 5 3.486 4.97 51 Nan Nan Nan 3.486 5.03 62 3.500 5.10
11 5 90 4.638 4.99 7 4.635 5.04 49 Nan Nan Nan 1.00 1.00 2 4.650 5.10
12 2.5 90 6.179 4.96 9 6.178 4.94 47 Nan Nan Nan 1.00 1.00 2 6.200 4.90
13 2.5 90 6.797 4.91 9 6.796 4.89 55 Nan Nan Nan 1.00 1.00 2 6.800 4.90
with target motion having an amplitude above 𝜆0∕2, because a mini-
mum one fringe is required for estimation of 𝜙F(𝑛) using IPUM [16],
which is then processed using the proposed MA method.

5. Conclusion

In this work, Marquardt’s algorithm-based fast and accurate 𝐶 𝛼
estimation method is proposed for displacement measurement using an
SMI sensor. The proposed method utilizes a simple numerical analysis
approach to estimate 𝐶 and 𝛼 with a low average error of 0.0023 and
0.0006 for 𝐶 and 𝛼 estimation. The proposed method requires less
than six iterations and can process SMI signals from all three major
feedback regimes. The method’s simplicity, accuracy, and fast nature
are crucial to developing compact and cost-effective SMI sensors with
high-resolution real-time displacement sensing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] S. Donati, Developing self-mixing interferometry for instrumentation and
measurements, Laser Photonics Rev. 6 (3) (2012) 393–417.

[2] T. Taimre, M. Nikolić, K. Bertling, Y.L. Lim, T. Bosch, A.D. Rakić, Laser feedback
interferometry: a tutorial on the self-mixing effect for coherent sensing, Adv. Opt.
Photonics 7 (3) (2015) 570–631.

[3] O.D. Bernal, H.C. Seat, U. Zabit, F. Surre, T. Bosch, Robust detection of non-
regular interferometric fringes from a self-mixing displacement sensor using
Bi-wavelet transform, IEEE Sens. J. 16 (22) (2016) 7903–7910.

[4] X. Wang, B. Gao, C. Jiang, T. Dong, P. Chen, All-fiber rotary velocity mea-
surement based on Doppler frequencies difference obtained by two homodyne
interferometers, Appl. Opt. (2021).

[5] M. Norgia, F. Bandi, A. Pesatori, S. Donati, High-sensitivity vibrometer based on
FM self-mixing interferometry, J. Phys. Conf. Ser. 1249 (1) (2019) 012020.

[6] Y. Zhao, H. Zhang, Angle measurement method based on speckle affected laser
self-mixing interference signal, Opt. Commun. 482 (2021) 126569.

[7] Y. Zhao, J. Zhou, C. Wang, Y. Chen, L. Lu, Temperature measurement of the laser
cavity based on multi-longitudinal mode laser self-mixing effect, IEEE Sens. J.
19 (12) (2019) 4386–4392.

[8] C. Bourquard, A. Faure-Beaulieu, N. Noiray, Whistling of deep cavities subject
to turbulent grazing flow: intermittently unstable aeroacoustic feedback, J. Fluid
Mech. 909 (2021).

[9] Z. Duan, Y. Yu, B. Gao, C. Jiang, Absolute distance measurement based on
multiple self-mixing interferometry, Opt. Commun. 389 (2017) 270–274.

[10] C. Wang, et al., Full-circle range and microradian resolution angle measurement
using the orthogonal mirror self-mixing interferometry, Opt. Express 26 (8)
(2018) 10371–10381.

[11] Y. Zhang, Y. Wei, C. Chen, W. Huang, X. Wang, H. Xu, Self-mixing interferometer
based on frequency analysis method for accurate refractive index measurement,
IEEE Photonics J. 8 (2) (2016) 1–6.

[12] J.V. Knuuttila, P.T. Tikka, M.M. Salomaa, Scanning michelson interferometer for
imaging surface acoustic wave fields, Opt. Lett. 25 (9) (2000) 613–615.
7

[13] C.-H. Kim, Effect of linewidth enhancement factor on displacement reconstruction
and immediate estimation of feedback factor for weak feedback, Opt. Commun.
461 (2020) 125203.

[14] A.L. Arriaga, F. Bony, T. Bosch, Real-time algorithm for versatile displacement
sensors based on self-mixing interferometry, IEEE Sens. J. 16 (1) (2016) 195–202.

[15] C. Bes, G. Plantier, T. Bosch, Displacement measurements using a self-mixing
laser diode under moderate feedback, IEEE Trans. Instrum. Meas. 55 (4) (2006)
1101–1105.

[16] O.D. Bernal, U. Zabit, T. Bosch, Study of laser feedback phase under self-mixing
leading to improved phase unwrapping for vibration sensing, IEEE Sens. J. 13
(12) (2013) 4962–4971.

[17] U. Zabit, O.D. Bernal, S. Amin, M.F. Qureshi, A.H. Khawaja, T. Bosch, Spectral
processing of self-mixing interferometric signal phase for improved vibration
sensing under weak-and moderate-feedback regime, IEEE Sens. J. 19 (23) (2019)
11151–11158.

[18] T. Hussain, S. Amin, U. Zabit, E. Ayguadé, Implementation of a high-accuracy
phase unwrapping algorithm using parallel-hybrid programming approach for
displacement sensing using self-mixing interferometry, J. Supercomput. 77 (9)
(2021) 9433–9453, http://dx.doi.org/10.1007/s11227-021-03634-6.

[19] S. Amin, T. Hussain, Improved displacement sensing by spectral processing of
laser self-mixing interferometry signal phase, Optik (2021) 167722.

[20] S. Amin, U. Zabit, O.D. Bernal, T. Hussain, High resolution laser self-mixing
displacement sensor under large variation in optical feedback and speckle, IEEE
Sens. J. (2020).

[21] U. Zabit, Optimisation of a Self-Mixing Laser Displacement Sensor, 2010.
[22] I. Ahmed, U. Zabit, Fast estimation of feedback parameters for a self-mixing

interferometric displacement sensor, in: 2017 International Conference on
Communication, Computing and Digital Systems, C-CODE, IEEE, 2017, pp.
407–411.

[23] Y. Fan, Improvement of measurement performance for self-mixing interferometry
based displacement sensing system, 2011.

[24] T. Hussain, S. Amin, U. Zabit, O.D. Bernal, T. Bosch, A high performance
real-time interferometry sensor system architecture, Microprocess. Microsyst. 64
(2019) 23–33.

[25] C.-M. Ri, C.-H. Kim, Y.-N. Oh, S.-C. Kim, Immediate estimation of feedback
factor and linewidth enhancement factor from measured self-mixing signals under
moderate or strong regime, Meas. Sci. Technol. 31 (6) (2020) 065204.

[26] C. Kim, C. Lee, O. Kwonhyok, Effect of linewidth enhancement factor on fringe
in a self-mixing signal and improved estimation of feedback factor in laser diode,
IEEE Access 7 (2019) 28886–28893.

[27] S. Amin, T. Hussain, U. Zabit, FPGA based processing of speckle affected self-
mixing interferometric signals, in: 2016 International Conference on Frontiers of
Information Technology, FIT, IEEE, 2016, pp. 292–296.

[28] S. Amin, U. Zabit, T. Hussain, O.D. Bernal, Hardware implementation of
metric algorithms for a self-mixing laser interferometric sensor, in: 2016 19th
International Multi-Topic Conference, INMIC, IEEE, 2016, pp. 1–5.

[29] T. Hussain, S. Amin, U. Zabit, F. Kamran, O.D. Bernal, T. Bosch, A high
performance real-time FGPA-based interferometry sensor architecture, in: 2016
International Conference on Frontiers of Information Technology, FIT, IEEE,
2016, pp. 130–135.

[30] T. Hussain, S. Amin, U. Zabit, Implementation of high precision laser interferom-
etry algorithm for real-time displacement sensing using multi-core architecture,
in: 2017 International Conference on Communication, Computing and Digital
Systems, C-CODE, IEEE, 2017, pp. 369–373.

[31] Y. Yu, G. Giuliani, S. Donati, Measurement of the linewidth enhancement factor
of semiconductor lasers based on the optical feedback self-mixing effect, IEEE
Photonics Technol. Lett. 16 (4) (2004) 990–992.

[32] D.J. Bernstein, Understanding Brute Force, Vol. 36, Workshop Record of ECRYPT
STVL Workshop on Symmetric Key Encryption, eSTREAM report, Citeseer, 2005,
p. 2005.

http://refhub.elsevier.com/S0030-4018(21)00942-1/sb1
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb1
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb1
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb2
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb2
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb2
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb2
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb2
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb3
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb3
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb3
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb3
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb3
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb4
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb4
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb4
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb4
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb4
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb5
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb5
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb5
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb6
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb6
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb6
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb7
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb7
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb7
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb7
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb7
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb8
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb8
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb8
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb8
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb8
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb9
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb9
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb9
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb10
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb10
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb10
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb10
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb10
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb11
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb11
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb11
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb11
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb11
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb12
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb12
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb12
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb13
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb13
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb13
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb13
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb13
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb14
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb14
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb14
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb15
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb15
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb15
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb15
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb15
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb16
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb16
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb16
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb16
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb16
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb17
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb17
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb17
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb17
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb17
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb17
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb17
http://dx.doi.org/10.1007/s11227-021-03634-6
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb19
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb19
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb19
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb20
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb20
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb20
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb20
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb20
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb21
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb22
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb22
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb22
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb22
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb22
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb22
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb22
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb23
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb23
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb23
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb24
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb24
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb24
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb24
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb24
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb25
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb25
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb25
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb25
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb25
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb26
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb26
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb26
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb26
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb26
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb27
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb27
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb27
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb27
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb27
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb28
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb28
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb28
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb28
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb28
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb29
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb29
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb29
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb29
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb29
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb29
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb29
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb30
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb30
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb30
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb30
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb30
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb30
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb30
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb31
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb31
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb31
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb31
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb31
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb32
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb32
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb32
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb32
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb32


M.S. Orakzai, S. Amin, Z.A. Khan et al. Optics Communications 508 (2022) 127751
[33] Y. Zhao, X. Fan, C. Wang, L. Lu, An improved intersection feedback micro-radian
angle-measurement system based on the laser self-mixing interferometry, Opt.
Lasers Eng. 126 (2020) 105866.

[34] K. Kou, C. Wang, Influence of linewidth enhancement factor $$\alpha $$ 𝛼 on
self-mixing interferometry in solid-state lasers, Opt. Rev. 28 (1) (2021) 99–105.

[35] H.-S. Hong, C.-H. Kim, J.-H. Kim, U.-H. Song, H.-S. Li, K.-I. Mun, High-speed
joint estimation of for strong feedback regime with fringe loss, Opt. Commun.
474 (2020) 126161.

[36] H.P. Gavin, The Levenberg–Marquardt Algorithm for Nonlinear Least Squares
Curve-Fitting Problems, Department of Civil and Environmental Engineering,
Duke University, 2019, p. 1.
8

[37] J.C. Meza, Steepest descent, Wiley Interdiscip. Rev. Comput. Stat. 2 (6) (2010)
719–722.

[38] I. Ahmed, U. Zabit, A. Salman, Self-mixing interferometric signal enhancement
using generative adversarial network for laser metric sensing applications, IEEE
Access 7 (2019) 174641–174650.

[39] Z.A. Khan, U. Zabit, O.D. Bernal, T. Hussain, Adaptive estimation and reduction
of noises affecting a self-mixing interferometric laser sensor, IEEE Sens. J. 20
(17) (2020) 9806–9815.

[40] S. Donati, M. Norgia, SNR improvement of 8.2 dB in a self-mixing laser diode
interferometer by using the difference signal at the output mirrors, Chin. Opt.
Lett. 19 (9) (2021) 092502.

http://refhub.elsevier.com/S0030-4018(21)00942-1/sb33
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb33
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb33
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb33
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb33
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb34
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb34
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb34
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb35
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb35
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb35
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb35
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb35
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb36
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb36
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb36
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb36
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb36
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb37
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb37
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb37
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb38
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb38
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb38
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb38
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb38
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb39
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb39
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb39
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb39
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb39
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb40
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb40
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb40
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb40
http://refhub.elsevier.com/S0030-4018(21)00942-1/sb40

	Fast and highly accurate estimation of feedback coupling factor and linewidth enhancement factor for displacement sensing under different feedback regimes
	Introduction
	SMI fundamentals and proposed methodology
	SMI fundamentals
	MA based proposed method

	Simulation results
	Experimental results
	Conclusion
	Declaration of competing interest
	References


