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Abstract: Stratification plays vital role in chemical process, oceanography, agriculture and

geophysical flows. When two fluids with different temperatures are mixed, a density difference is

generated and thermal stratification is induced between two fluids. Thermal stratified flows exist

in single phase and multi-phase flows. Due to temperature differences, different layers of the fluid

are generated . In nature, stratification process controls the oxygen and hydrogen ratio which

controls species growth rate in lakes and ponds. Therefore, in this attempt, we scrutinizes the

effects of Sutterby nanoliquid flow deformed by a linearly stretchable sheet. Inclined magnetic

field is included to explore the features of electrically conducting fluid. Thermal stratification

phenomenenon is implemented over a horizontal sheet to elaborate the features of heat transfer.

Variable fluid features is also accounted. Zero mass flux condition is also incorporated along with

Brownian diffusion and thermophoresis phenomenon. Using the suitable transformations, the system

of partial differential equations are transmuted into coupled system of ordinary differential equations.

Analytically solutions are computed via homotopic approach. Graphical behavior of applicable

parameters on temperature, velocity, and concentration fields are illustrated and elaborated. Skin

friction coefficient and Nusselt number are computed and analyzed.

Key-words: Sutterby fluid; Nanofluid; Thermal stratification; Variable thermal conduc-

tivity; Inclined MHD; zero mass flux condition.
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1 Introduction

Nanoparticles are emerged into base fluid to form nanofluids. The nanofluids were initially

named by Choi [1]. The nanoparticles (like metal, graphene, metal oxide, CNT etc.) are

added in base fluid (i.,e., glycol, water, ethylene etc.) in order to enhance the fluid features

like thermal conductivity. Nanoparticle’s motion leads to thermal diffusion which depicts

the nanofluid behavior. It is well recognized that nanoparticles are added to generate heat

transfer media with conductivity of metals. Therefore, nanofluids are exercised in order to

improve the efficiency of thermal devices. Fluid cooling and heating processes are signifi-

cant in industries including power generation, engines, solar water heater, manufacturing,

transportation, geothermal systems, heat pipes, electronic devices and nuclear reactors. In

the view of its importance, Prasad et al. [2] described the radiative nanofluid flow under

magnetic field. Tian et al. [3] discussed the convectively heated non-Newtonian magneto

nanofluid flow past a stretchable sheet towards stagnation region. Ahmed et al. [4] explored

the heat source features in Maxwell stagnant nanofluid over a rotating porous disk. Khan et

al. [5] discussed the irreversibility aspect in Carreau nanofluid flow. Derakhshan et al. [6]

explored the hydro-magneto analysis in nanofluid flow through parallel sheets.

Thermal conductivity is one of the variable property of fluids. It depends linearly or

exponentially upon temperature. The temperature dependent thermal conductivity is incor-

porated to predict the heat transfer rate accurately. It has key role in industrial processes

involving heat transfer. The scheme designed for materials having constant thermal conduc-

tivity is not suitable for variable fluid properties. Thermal coductivity involves in various

research domains e.g. electronics, building insulation and many others. The materials (i.e.

silver, copper, aluminium etc. ) having high thermal conductance are utilized in turbines

and electronic devices while low thermal conductivity materials (e.g. aluminia, polystyrene
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etc.) are engaged in furnaces and building construction. Hamid et al. [7] explained the

varying thermal features in Williamson magneto nanofluid flow considering mixed convec-

tion phenomenon. Hayat et al. [8] depicted the variable thermal conductivity analysis in

hydromagneto stratified third grade fluid flow through stretched surface. Salawu et al. [9]

illustrated the effect of varying conductivity in hydromagnetic radiative and reactive Powell-

Eyring material flow saturated in porous media with entropy generation. Ahmed et al. [10]

elaborated the variable conductivity analysis in Maxwell MHD fluid flow deformed by ro-

tating disks. Khan et al. [11] addressed the variable fluid characteristics and irreversibility

analysis in slip flow of radiative fluid considering mixed convection.

Process of stratification occurs in different natural and industrial domain. Variations

in temperature with different fluid densities leads to the stratification process. It plays

significant role in managing and controlling the ratio of hydrogen element and oxygen in

the surroundings, which affects the rate of growth of diverse species. It involves in many

processes like in agriculture field, volcanic flow systems, and also in rivers and reservoirs,

usage of heterogeneous mixtures in food industries and density stratification of atmosphere.

Bilal et al. [12] reported the magneto-hydrodynamic analysis of thermally stratified Carreau

fluid flow. Anjum et al. [13] explored the slip features in stratified stagnant fluid flow

deformed by Riga plate of varying thickness. Khan et al. [14] described the dual stratified

Maxwell fluid flow with varying viscosity. Hamid et al. [15] explored the mixed convective

double stratifiedWilliamson nanofluid flow. Ali et al. [16] discussed the stratification analysis

in Maxwell nanomaterial flow through inclined surface.

Main objective here is to investigates the variation of inclined magnetic strength on the

flow of thermally stratified Sutterby nanofluid. Brownian diffusion and thermophoresis effects

are considered. Thermal conductivity subject to temperature is also incorporated in current
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analysis. zero mass flux condition is accounted at the boundary. Similarity variables are

exercised to express the governing equations into dimensionless form. Homotopic technique

(HAM) [17 − 21] is adopted to acquire the approximate analytic solutions of the system.

The influence of the involved parameters on temperature, velocity and fluid concentration is

explored graphically. Furthermore, Nusselt number and drag force are analyzed explicitly.

2 Problem Formulation

The flow of incompressible Sutterby nanofluid past a stretching non porous sheet is analyzed.

The inclined magnetic strength 0 is incorporated in flow regime which makes an angle of

1 with stretching sheet. The Cartesian coordinate system is chosen for the flow analysis

as shown in Fig.1. Thermal stratification and varying thermal conductivity are considered.

The heat and mass is subjected to zero mass flux condition. Fluid temperature  is assumed

to be very large as compared to the ambient temperature ∞. i.e ∞  

Fig.1 Flow geometry

Under boundary layer assumption, the standard equations take the form:
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with the boundary conditions:

 =  () = ,  = 0,  =  () = 0+, 
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Here  and  represent velocity components along the coordinate axes,  represents fluid

kinematic viscosity,  represents Sutterby fluid coefficient,  and  represent the densities of

fluid and nanoparticles,  represents power law index,  represents electrical conductivity, B0

represents strength of constant magnetic field 1 represents inclination of the magnetic field

,  represents the temperature of fluid, ∞ represents free stream temperature, 0 represents

reference temperature,  represents wall temperature,  and  represent heat capacities

of the surface and nanoparticles,  represents concentration,  and  represent Brownian

diffusion and thermal diffusion coefficients respectively,  () =  represents stretching

velocity,    1 represent dimensional constants. The variable thermal conductivity  ( )

satisfies the relation as:

 ( ) = ∞ (1 +  ())  (6)

∞ and  represent surrounding and dimensionless thermal conductivity respectively.

Utilizing the similarity transformations:
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the mass flux condition (1) is automatically satisfied while Eqs.(2-4) become:
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The associated boundary conditions take the form:
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here  represents fluid parameter,  represents Hartman number, Pr represents Prandtl

number,  represents lewis number, 1 represents thermal straitified parameter,  repre-

sents Brownian motion parameter,  represents thermosphoresis parameter. These quanti-

ties are defined through the following expressions:
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In non-dimensional form:
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In dimensionless variables, we have
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
represents the local Reynolds number.

3 Solutions Method

The developed equations are non-linear in character and, thus, difficult to acquire exact

solutions. It is therefore suitable to employ analytical approximate technique termed as

HAM to solve them. To this end, we define initial approximation and linear operator by the

relations:
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where,  ( = 1− 7) represent arbitrary constants.

Generally analytical solutions are

 () =  () +1 +2
 +3

− (29)

 () =  () +4
 +5

− (30)

 () = 
 () +6

 +7
−

in which  ()  

 () and 

 () represents special solutions.

3.1 Convergence analysis

The ~  ~ and ~ represent auxiliary parameters for  ()   () and  ()  respectively.

The said parameters play impactful role in controlling and managing the convergence of

consequent series solution. To achieve the suitable values of these variables, ~-curves have

been sketched in Fig. 2. It is noticeable that the permissible ranges are −18 ≤ ~ ≤ −04,

−17 ≤ ~ ≤ −05 and −16 ≤ ~ ≤ −07.
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f '(0)
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Fig. 2 h-curves for  ()   () and  ()
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4 Discussion

In this portion, behavior of the eminent parameters is investigated on the velocity, tempera-

ture and nanofluid concentration for two values of power law index  = 1 and  = 2. Fig. 3

has been traced to understand the variation of fluid parameter () on the velocity distribution

for both values of n. It is reflected from this figure that the magnitude of the velocity declines

with increment in the fluid parameter . Physically, for higher  fluid viscosity decays and

as a consequence, the velocity field decrements. The velocity gradient for diverse values of

inclination angle 1 and for two values of  is displayed in Fig. 4. Velocity gradient curve de-

cays for larger 1. In fact, dominant angle 1 increments magnetic field which consequently

produces higher Lorentz force. That is why velocity field declines. Fig. 5 is drawn to display

the influence of Hartmann number on velocity gradient for fixed values of power law index

.It can be seen that velocity reduces for higher Hartmann number  . Physically, Lorentz

force enhances for dominant Hartmann number. Thus, velocity reduces. Fig. 6 displays

the variation of thermal conductivity parameter  on temperature. For larger  temperature

grows. Physically, higher  intensifies the thermal conductivity and resultantly, temperature

enhances for both values of  Features of Prandtl number (Pr) on fluid temperature curve are

addressed in Fig. 7 Enlargement in Prandtl number shows decaying behavior of temperature

field. Greater Prandtl number is accountable for less thermal diffusivity. Thus, lesser heat

transfers from heated surface to cold surrounding fluid. Hence, temperature decays for fixed

. Fig. 8 depicts the features of  thermophoresis parameter on temperature field. Temper-

ature rises for thermophoresis phenomenon because particles are pushed to the cold region

from heated one, therefore, temperature field enhances for both values of  Fig. 9 shows

the variation in temperature field by thermal stratification parameter 1. Higher intensity

of 1 reduces temperature distribution. Physically, higher thermal stratification produces
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significant density difference between the upper and lower parts of the fluid which further

reduces the convective flow. Thus, temperature field decays for fixed . Fig.10 depicts the

temperature field under associated boundary layer for diverse values of Brownian parameter.

As  grows, temperature enhances for both values of . Bodily an enlargement in  reacts

in the demotion of mean assimilation coefficient which is accountable for the improvement of

temperature distribution. Fig. 11 shows the impact of Lewis number  on concentration.

Physically, mass transfer reduces by increasing Lewis number . As a result concentration

field decays for fixed . Fig. 12 describes the behavior of Brownian parameter  on fluid

concentration. The concentration field is decaying function of Brownian parameter  In

fact, when Brownian parameter grows, the collisions between fluid particles enhances and

ensures lower mass transport phenomenon from heated sheet towards cold fluid. Therefore,

concentration field shows decreasing behavior for fixed . Fig. 13 reflects the behavior of

thermophoresis parameter  on fluid concentration. Incriementing behaviour of concentra-

tion is noted for dominant  for both values of . Fig. 14 illustrates the behavior of 

and  on coefficient of skin friction. Magnitude of skin friction rises for both  and . Fig.

15 depicts the behavior of  and 1 on rate of heat transfer. Clearly Nusselt number shows

dominating result for  and 1.
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Fig. 10 Impact of  on  ()
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Fig. 11 Impact of  on  ()
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Fig. 15 Impact of Pr & 1 on 

5 Closing remarks

Characteristics of Sutterby nanofluid over a linearly stretchable plate with inclined MHD,

linear stratification and varying thermal conductivity in the presence of zero flux condition

have been disclosed in this attempt. The following key points are worth mentioning.
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• Decaying behavior of velocity field is achieved for higher Hartmann number.

• Higher thermal conductivity parameter  intensifies the thermal distribution.

• Temperature profile decays for higher stratified parameter 1.

• Brownian motion and thermophoresis parameters result in increment of temperature

field.

• Brownian parameter is decreasing function for concentration field whereas concentration

grows for higher thermophresis parameter.
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