# GENERAL SUM-CONNECTIVITY INDEX OF TREES AND UNICYCLIC GRAPHS WITH FIXED MAXIMUM DEGREE 

Muhammad Kamran JAMIL ${ }^{1}$, Ioan TOMESCU ${ }^{2}$<br>${ }^{1}$ GC University, Abdus Salam School of Mathematical Sciences, Lahore, Pakistan.<br>Riphah Institute of Computing and Applied Sciences, Riphah International University, Department of Mathematics, Lahore, Pakistan.<br>${ }^{2}$ University of Bucharest, Faculty of Mathematics and Computer Science, Romaina<br>Corresponding author: Muhammad Kamran Jamil, Email: m.kamran.sms@gmail.com


#### Abstract

The general sum-connectivity index of a graph $G$ is defined as $\chi_{\alpha}(G)=\sum_{u v \in E(G)}(d(u)+d(v))^{\alpha}$, where $d(v)$ denotes the degree of the vertex $v$ in $G$ and $\alpha$ is a real number. In this paper it is deduced the maximum value for the general sum-connectivity index of $n$-vertex trees for $-1.7036 \leq \alpha<0$ and of $n$-vertex unicyclic graphs for $-1 \leq \alpha<0$ respectively, with fixed maximum degree $\Delta$. The corresponding extremal graphs, as well as the $n$-vertex unicyclic graphs with the second maximum general sum-connectivity index for $n \geq 4$ are characterized. This extends the corresponding results by Du, Zhou and Trinajstic $c^{\prime}$ [arXiv.org/1210.5043] about sumconnectivity index.


Key words: Vertex degree, tree, unicyclic graphs, maximum degree, general sum-connectivity index.

## 1. INTRODUCTION

Let $G(V(G), E(G))$ be a simple graph, where $V(G)$ and $E(G)$ are the sets of vertices and of edges, respectively. For a vertex $v \in V(G), d(v)$ denotes the degree of vertex $v, N(v)$ is the set of vertices adjacent to $v$ and the maximum vertex degree of the graph $G$ is denoted by $\Delta(G)$. If $u v \in E(G), G-u v$ denotes the subgraph of $G$ obtained by deleting the edge $u v$; similarly is defined the graph $G+u v$ if $u v \notin E(G)$. For $n \geq 3$ let $T(n, \Delta)$ be the set of trees with $n$ vertices and maximum degree $\Delta$ and $U(n, \Delta)$ be the set of unicyclic graphs with $n$ vertices and maximum degree $\Delta(2 \leq \Delta \leq n-1)$. Let $P_{n}$ and $C_{n}$ be the path and the cycle, respectively, on $n \geq 3$ vertices. For $\Delta=2, T(n, \Delta)=\left\{P_{n}\right\}$ and $U(n, \Delta)=\left\{C_{n}\right\}$. Attaching a path $P_{r}$ to a vertex $v$ of a graph means adding an edge between $v$ and a terminal vertex of the path. If $r=1$, then we attach a pendant vertex.

The Randić index $R(G)$ was proposed by Randić [10]. This is one of the most used molecular descriptors in structure-property and structure-activity relationship studies [2, 6, 7, 8]. The Randić index is also called product-connectivity index and it is defined as

$$
R(G)=\sum_{u v \in E(G)}(d(u) d(v))^{-1 / 2} .
$$

Bollobás and Erdös [1] generalized the idea of Randić index and proposed the general Randić index, denoted as $R_{\alpha}$. It is defined as

$$
R_{\alpha}(G)=\sum_{u v \in E(G)}(d(u) d(v))^{\alpha},
$$

where $\alpha$ is a real number.

The sum-connectivity index was proposed by Trinajstić et al. [13] and it was observed that sumconnectivity index and product-connectivity index correlate well among themselves and with the $\Pi$-electronic energy of benzenoid hydrocarbons [9]. This concept was extended to the general sumconnectivity index in [14] and defined as

$$
\chi_{\alpha}(G)=\sum_{u v \in E(G)}(d(u)+d(v))^{\alpha} .
$$

Then $\chi_{-1 / 2}$ is the sum-connectivity index [13].
Several extremal properties of the sum-connectivity and general sum-connectivity indices for trees, unicyclic graphs and general graphs were given in $[3,4,11,12,13,14]$.

In [5] Zhou et al. obtained the maximum sum-connectivity index of graphs in the set of trees and in the set of unicyclic graphs respectively, with a given number of vertices and maximum degree and determined the corresponding extremal graphs. They also found the $n$-vertex unicyclic graphs with the first two maximum sum-connectivity indices for $n \geq 4$. In this paper we extend these results for the general sumconnectivity index.

## 2. MAIN RESULTS

First we will discuss two lemmas that will be used in the proofs.
LEMMA 2.1 [4]. Let $Q$ be a connected graph with at least two vertices. For $a \geq b \geq 1$, let $G_{1}$ be the graph obtained from $Q$ by attaching two paths $P_{a}$ and $P_{b}$ to $u \in V(Q)$ and $G_{2}$ the graph obtained from $Q$ by attaching a path $P_{a+b}$ to $u$. Then $\chi_{\alpha}\left(G_{2}\right)>\chi_{\alpha}\left(G_{1}\right)$, for $\alpha_{1} \leq \alpha<0$, where $\alpha_{1} \approx-1.7036$ is the unique root of the equation $\frac{3^{\alpha}-4^{\alpha}}{4^{\alpha}-5^{\alpha}}=2$.

The following property is an extension of a transformation defined in [5].
LEMMA 2.2 [5]. Let $M$ be a connected graph with $|V(M)| \geq 3$ and $u$ be a vertex of degree two of $M$. Let $H$ be the graph obtained from $M$ by attaching a path $P_{a}$ to $u$. Denote by $u_{1}$ and $u_{2}$ the two neighbors of $u$ in $M$, and by $u^{\prime}$ the pendant vertex of the path attached to $u$ in $H$. If $d_{H}\left(u_{2}\right) \leq 3$, then for $H^{\prime}=H-\left\{u u_{2}\right\}+\left\{u^{\prime} u_{2}\right\}$ we have $\chi_{\alpha}\left(H^{\prime}\right)>\chi_{\alpha}(H)$, where $-1 \leq \alpha<0$.

Proof. If $d_{H}\left(u, u^{\prime}\right)=1$, then for $\alpha<0$ we have:
$\chi_{\alpha}\left(H^{\prime}\right)-\chi_{\alpha}(H)=\left(d_{H}\left(u_{1}\right)+2\right)^{\alpha}+\left(d_{H}\left(u_{2}\right)+2\right)^{\alpha}-\left(d_{H}\left(u_{1}\right)+3\right)^{\alpha}-\left(d_{H}\left(u_{2}\right)+3\right)^{\alpha}>0$.
If $d_{H}\left(u, u^{\prime}\right) \geq 2$, then

$$
\begin{aligned}
\chi_{\alpha}\left(H^{\prime}\right)-\chi_{\alpha}(H) & =\left(d_{H}\left(u_{1}\right)+2\right)^{\alpha}-\left(d_{H}\left(u_{1}\right)+3\right)^{\alpha}+\left(d_{H}\left(u_{2}\right)+2\right)^{\alpha}-\left(d_{H}\left(u_{2}\right)+3\right)^{\alpha}+2 \cdot 4^{\alpha}-3^{\alpha}-5^{\alpha} \\
& >\left(d_{H}\left(u_{2}\right)+2\right)^{\alpha}-\left(d_{H}\left(u_{2}\right)+3\right)^{\alpha}+2 \cdot 4^{\alpha}-3^{\alpha}-5^{\alpha} .
\end{aligned}
$$

Since $(x+2)^{\alpha}-(x+3)^{\alpha}$ is decreasing for $x \geq 0$, we have $\left(d_{H}\left(u_{2}\right)+2\right)^{\alpha}-\left(d_{H}\left(u_{2}\right)+3\right)^{\alpha} \geq 5^{\alpha}-6^{\alpha}$. Therefore

$$
\chi_{\alpha}\left(H^{\prime}\right)-\chi_{\alpha}(H)>2 \cdot 4^{\alpha}-3^{\alpha}-6^{\alpha} .
$$

The function $\eta(x)=2 \cdot 4^{x}-3^{x}-6^{x}$ has roots $x_{1}=-1$ and $x_{2}=0$ and $\eta(x)>0$ for $x \in(-1,0)$ [15]. It follows that $\chi_{\alpha}\left(H^{\prime}\right)>\chi_{\alpha}(H)$ for every $-1 \leq \alpha<0$. For $\frac{n}{2} \leq \Delta \leq n-1$, let $T_{n, \Delta}$ be the tree
obtained by attaching $2 \Delta+1-n$ pendant vertices and $n-\Delta-1$ paths of length two to a vertex. For $\frac{n+2}{2} \leq \Delta \leq n-1$, let $U_{n, \Delta}$ be the unicyclic graph obtained by attaching $2 \Delta-n-1$ pendant vertices and $n-\Delta-1$ paths of length two to the same vertex of a triangle.

For $\frac{n}{2} \leq \Delta \leq n-1$, let $T_{n, \Delta}$ be the tree obtained by attaching $2 \Delta+1-n$ pendant vertices and $n-\Delta-1$ paths of length two to a vertex. For $\frac{n+2}{2} \leq \Delta \leq n-1$, let $U_{n, \Delta}$ be the unicyclic graph obtained by attaching $2 \Delta-n-1$ pendant vertices and $n-\Delta-1$ paths of length two to the same vertex of a triangle.

THEOREM 2.3. Let $G \in T(n, \Delta)$, where $2 \leq \Delta \leq n-1$ and $\alpha_{1} \leq \alpha<0$, where $\alpha_{1} \approx-1.7036$ is the unique root of the equation $\frac{3^{\alpha}-4^{\alpha}}{4^{\alpha}-5^{\alpha}}=2$. Then

$$
\chi_{\alpha}(G) \leq \begin{cases}\left((\Delta+2)^{\alpha}-(\Delta+1)^{\alpha}+3^{\alpha}\right)(n-\Delta-1)+\Delta(\Delta+1)^{\alpha} \text { if } \frac{n}{2} \leq \Delta \leq n-1 \\ \left((\Delta+2)^{\alpha}+3^{\alpha}-4^{\alpha}\right) \Delta+(n-\Delta-1) 4^{\alpha} & \text { if } 2 \leq \Delta \leq \frac{n-1}{2}\end{cases}
$$

and equality holds if and only if $G=T_{n, \Delta}$ for $\frac{n}{2} \leq \Delta \leq n-1$, and $G$ is a tree obtained by attaching $\Delta$ paths of length at least two to a unique vertex for $2 \leq \Delta \leq \frac{n-1}{2}$.

Proof. The case $\Delta=2$ is clear since in this case $G=P_{n}$. Suppose that $\Delta \geq 3$ and let $G$ be a tree in $T(n, \Delta)$ having maximum general sum-connectivity index. Let $v$ be a vertex of degree $\Delta$ in $G$. If there exists some vertex of degree greater than two in $G$ different from $v$, then by Lemma 2.1, we may get a tree in $T(n, \Delta)$ with greater general sum-connectivity index, a contradiction. It follows that $v$ is the unique vertex of degree greater than two in $G$. Let $k$ be the number of neighbors of $v$ with degree two. Since in $V(G) \backslash(\{v\} \cup N(v))$ there are $n-\Delta-1$ vertices, it follows that $k \leq \min \{n-\Delta-1, \Delta\}$. If $n-\Delta-1 \geq \Delta$, i.e., $\Delta \leq \frac{n-1}{2}$, then $1 \leq k \leq \Delta$. If $n-\Delta-1<\Delta$, i.e., $\Delta \geq \frac{n}{2}$, then $0 \leq k \leq n-\Delta-1$. We get

$$
\begin{aligned}
& \chi_{\alpha}(G)=(\Delta-k)(\Delta+1)^{\alpha}+k(\Delta+2)^{\alpha}+k \cdot 3^{\alpha}+(n-\Delta-k-1) 4^{\alpha} \\
= & k\left((\Delta+2)^{\alpha}-(\Delta+1)^{\alpha}+3^{\alpha}-4^{\alpha}\right)+\Delta(\Delta+1)^{\alpha}+(n-\Delta-1) 4^{\alpha} .
\end{aligned}
$$

Since $(\Delta+2)^{\alpha}-(\Delta+1)^{\alpha}$ is increasing for $\Delta \geq 3$ we obtain $(\Delta+2)^{\alpha}-(\Delta+1)^{\alpha}+3^{\alpha}-4^{\alpha} \geq 5^{\alpha}+3^{\alpha}-2 \cdot 4^{\alpha}>0$, the last inequality holding by Jensen's inequality. Consequently,

$$
\chi_{\alpha}(G) \leq \begin{cases}\left((\Delta+2)^{\alpha}-(\Delta+1)^{\alpha}+3^{\alpha}\right)(n-\Delta-1)+\Delta(\Delta+1)^{\alpha} \text { if } \frac{n}{2} \leq \Delta \leq n-1 \\ \left((\Delta+2)^{\alpha}+3^{\alpha}-4^{\alpha}\right) \Delta+(n-\Delta-1) 4^{\alpha} & \text { if } 2 \leq \Delta \leq \frac{n-1}{2}\end{cases}
$$

For $\frac{n}{2} \leq \Delta \leq n-1$, the equality holds if and only if $k=n-\Delta-1$, i.e., each of the $n-\Delta-1$ neighbors of degree two of the vertex $v$ is adjacent to exactly a pendant vertex, i.e., $G=T_{n, \Delta}$. For $2 \leq \Delta \leq \frac{n-1}{2}$ the equality holds for $k=\Delta$, i.e., $G$ is a tree obtained by attaching $\Delta$ paths of length at least two to a unique vertex.

Now we obtain the maximum general sum-connectivity index of graphs in $U(n, \Delta)$ and deduce the extremal graphs. As a consequence, we deduce the $n$-vertex unicyclic graphs with the first and second maximum general sum-connectivity indices for $n \geq 4$.

THEOREM 2.4. Let $G \in U(n, \Delta)$, where $2 \leq \Delta \leq n-1$ and $-1 \leq \alpha<0$. Then

$$
\chi_{\alpha}(G) \leq \begin{cases}(n-\Delta-1) 3^{\alpha}+(n-\Delta+1)(\Delta+2)^{\alpha}+(2 \Delta-n-1)(\Delta+1)^{\alpha}+4^{\alpha} \text { if } \frac{n+2}{2} \leq \Delta \leq n-1 \\ (\Delta-2) 3^{\alpha}+\Delta(\Delta+2)^{\alpha}+(n-2 \Delta+2) 4^{\alpha} 3 & \text { if } 2 \leq \Delta \leq \frac{n+1}{2}\end{cases}
$$

For $\frac{n+2}{2} \leq \Delta \leq n-1$ the equality holds if and only if $G=U_{n, \Delta}$. If $2 \leq \Delta \leq \frac{n+1}{2}$ the equality holds if and only if $G$ is a unicyclic graph obtained by attaching $\Delta-2$ paths of length at least two to a fixed vertex of a cycle.

Proof. The case $\Delta=2$ is trivial since in this case $G=C_{n}$. Suppose that $\Delta \geq 3, G$ is a graph in $U(n, \Delta)$ with maximum general sum-connectivity index, and $C$ is the unique cycle of $G$. Let $v$ be a vertex of degree $\Delta$ in $G$.

If $\Delta=3$ and there exists some vertex outside $C$ with degree three, then by Lemma 2.1, we may get a graph in $U(n, 3)$ with greater general sum-connectivity index, a contradiction. If there are at least two vertices on $C$ with degree three, then by Lemma 2.2, we may deduce the same conclusion. Thus, $v \in V(C)$ and $v$ is the unique vertex in $G$ with degree three. Then either $\chi_{\alpha}(G)=(n-2) 4^{\alpha}+2 \cdot 5^{\alpha}$ when $v$ is adjacent to a vertex of degree one and two vertices of degree two for $n \geq 4$, or $\chi_{\alpha}(G)=(n-4) 4^{\alpha}+3 \cdot 5^{\alpha}+3^{\alpha}$ when $v$ is adjacent to three vertices of degree two for $n \geq 5$. The difference of these two numbers equals $(n-2) 4^{\alpha}+2 \cdot 5^{\alpha}-(n-4) 4^{\alpha}-3 \cdot 5^{\alpha}-3^{\alpha}=2 \cdot 4^{\alpha}-5^{\alpha}-3^{\alpha}<0$ by Jensen's inequality. Hence, $G$ is the graph obtained by attaching a pendant vertex to a triangle for $n=4$, i.e., $G=U_{4,3}$, and a graph obtained by attaching a path of length at least two to a cycle for $n \geq 5$.

Now suppose that $\Delta \geq 4$. As for the case $\Delta=3$ we deduce that the vertex of maximum degree is unique, otherwise $G$ has not a maximum general sum-connectivity index in $U(n, \Delta)$. We will show that the vertex of maximum degree $v$ lies on $C$. Suppose that $v$ is not on $C$. Let $w$ be the vertex on $C$ such that $d_{G}(v, w)=\min \left\{d_{G}(v, x): x \in V(C)\right\}$. If there is some vertex outside $C$ with degree greater than two different from $v$, or if there is some vertex on $C$ with degree greater than two different from $w$, then by Lemmas 2.1 and 2.2 , we may get a graph in $U(n, \Delta)$ with greater general sum-connectivity index, a contradiction. Thus, $v$ and $w$ are the only vertices of degree greater than two in $G$, and $d_{G}(v)=\Delta$ and $d_{G}(w)=3$. Let $Q$ be the path connecting $v$ and $w$. Suppose that $v_{1}, v_{2}, \cdots, v_{\Delta-1}$ are the neighbors of $v$ outside $Q$. Let $d_{i}=d_{G}\left(v_{i}\right)$ for $i=1, \ldots, \Delta-1$. Note that since $G$ has maximum general sum-connectivity index, then $d_{1}, \ldots, d_{\Delta-1} \in\{1,2\}$, since otherwise we can apply Lemma 2.1 and obtain a graph having a
greater general sum-connectivity index. Consider $G_{1}=G-\left\{v v_{3}, \cdots, v v_{\Delta-1}\right\}+\left\{w v_{3}, \cdots, w v_{\Delta-1}\right\} \in U(n, \Delta)$. Note that $d_{G_{1}}(w)=\Delta$ and $d_{G_{1}}(v)=3$. Then

$$
\begin{aligned}
\chi_{\alpha}\left(G_{1}\right)-\chi_{\alpha}(G) & =\left(d_{1}+3\right)^{\alpha}-\left(d_{1}+\Delta\right)^{\alpha}+\left(d_{2}+3\right)^{\alpha}-\left(d_{2}+\Delta\right)^{\alpha}+2(\Delta+2)^{\alpha}-2 \cdot 5^{\alpha} \\
> & 5^{\alpha}-(2+\Delta)^{\alpha}+5^{\alpha}-(2+\Delta)^{\alpha}+2(\Delta+2)^{\alpha}-2 \cdot 5^{\alpha}=0
\end{aligned}
$$

since the function $(x+3)^{\alpha}-(x+\Delta)^{\alpha}$ is strictly decreasing in $x \geq 0$ for $\Delta \geq 4$. Because $d_{G_{1}}(v)=3$, then by Lemma 2.1, we may get a graph $G^{\prime}$ in $U(n, \Delta)$ such that $\chi_{\alpha}\left(G^{\prime}\right)>\chi_{\alpha}\left(G_{1}\right) \geq \chi_{\alpha}(G)$, a contradiction. Hence, we have shown that $v$ lies on $C$.

If there is some vertex outside $C$ with degree greater than two, then by Lemma 2.1 we may obtain a graph in $U(n, \Delta)$ with greater general sum-connectivity index, a contradiction. If there is some vertex on $C$ with degree three, then by Lemma 2.2, we may get a graph in $U(n, \Delta)$ with greater general sumconnectivity index, a contradiction. Thus, $G$ is a graph obtained from $C$ by attaching $\Delta-2$ paths to $v$. Let $k$ be the number of neighbors of $v$ with degree two. Then as above we get $k \leq \min \{n-\Delta-1, \Delta-2\}$. If $n-\Delta-1 \geq \Delta-2$, i.e., $\Delta \leq \frac{n+1}{2}$, then $0 \leq k \leq \Delta-2$. If $n-\Delta-1<\Delta-2$, i.e., $\Delta \geq \frac{n+2}{2}$, then $0 \leq k \leq n-\Delta-1$. We get

$$
\begin{gathered}
\chi_{\alpha}(G)=k 3^{\alpha}+(k+2)(\Delta+2)^{\alpha}+(\Delta-k-2)(\Delta+1)^{\alpha}+(n-\Delta-k) 4^{\alpha} \\
=\left(3^{\alpha}+(\Delta+2)^{\alpha}-(\Delta+1)^{\alpha}-4^{\alpha}\right) k+(\Delta-2)(\Delta+1)^{\alpha}+2(\Delta+2)^{\alpha}+4^{\alpha}(n-\Delta) .
\end{gathered}
$$

We have

$$
3^{\alpha}-4^{\alpha}+(\Delta+2)^{\alpha}-(\Delta+1)^{\alpha} \geq 3^{\alpha}-4^{\alpha}+6^{\alpha}-5^{\alpha}>0
$$

since the function $f(x)=(x+2)^{\alpha}-(x+1)^{\alpha}$ is strictly increasing for $\alpha<0$, hence $f(\Delta) \geq f(4)$ and $f(4)>f(2)$. It follows that $\chi_{\alpha}(G)$ is bounded above by

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left(3^{\alpha}+(\Delta+2)^{\alpha}-(\Delta+1)^{\alpha}-4^{\alpha}\right)(n-\Delta-1)+(\Delta-2)(\Delta+1)^{\alpha}+2(\Delta+2)^{\alpha}+4^{\alpha}(n-\Delta) \text { if } \frac{n+2}{2} \leq \Delta \leq n-1 \\
\left(3^{\alpha}+(\Delta+2)^{\alpha}-(\Delta+1)^{\alpha}-4^{\alpha}\right)(\Delta-2)+(\Delta-2)(\Delta+1)^{\alpha}+2(\Delta+2)^{\alpha}+4^{\alpha}(n-\Delta) \quad \text { if } 2 \leq \Delta \leq \frac{n+1}{2}
\end{array}\right. \\
& \quad= \begin{cases}(n-\Delta-1) 3^{\alpha}+(n-\Delta+1)(\Delta+2)^{\alpha}+(2 \Delta-n-1)(\Delta+1)^{\alpha}+4^{\alpha} \text { if } \frac{n+2}{2} \leq \Delta \leq n-1 \\
(\Delta-2) 3^{\alpha}+\Delta(\Delta+2)^{\alpha}+(n-2 \Delta+2) 4^{\alpha} & \text { if } 2 \leq \Delta \leq \frac{n+1}{2}\end{cases}
\end{aligned}
$$

Equality holds for $\frac{n+2}{2} \leq \Delta \leq n-1$ if and only if $k=n-\Delta-1$, i.e., $G=U_{n, \Delta}$; if $2 \leq \Delta \leq \frac{n+1}{2}$ then equality is reached if and only if $k=\Delta-2$, i.e., $G$ is a unicyclic graph obtained by attaching $\Delta-2$ paths of length at least two to a unique vertex of a cycle.

THEOREM 2.5. If $-1 \leq \alpha<0$, among the unicyclic graphs on $n \geq 4$ vertices, $C_{n}$ is the unique graph with maximum general sum-connectivity index, which is equal to $n 4^{\alpha}$. For $n=4, U_{4,3}$ is the unique graph with the second maximum general sum-connectivity index, which is equal to $2 \cdot 4^{\alpha}+2 \cdot 5^{\alpha}$. For $n \geq 5$,
the graphs obtained by attaching a path of length at least two to a vertex of a cycle are the unique graphs with the second maximum general sum-connectivity index, which is equal to $(n-4) 4^{\alpha}+3 \cdot 5^{\alpha}+3^{\alpha}$.

Proof. For $n=4$ we get

$$
\chi_{\alpha}\left(U_{4,3}\right)-\chi_{\alpha}\left(C_{4}\right)=2 \cdot 5^{\alpha}-2 \cdot 4^{\alpha}<0 .
$$

Now, suppose that $n \geq 5$ and $G$ is a unicyclic graph on $n$ vertices. Let $\Delta$ be the maximum degree of $G$, where $2 \leq \Delta \leq n-1$. Let $f(x)=(x-2) 3^{\alpha}+x(x+2)^{\alpha}+(n-2 x+2) 4^{\alpha}$ for $x \geq 2$. If $\frac{n+2}{2} \leq \Delta \leq n-1$, then by Theorem 2.4,

$$
\begin{aligned}
\chi_{\alpha}(G) & \leq(n-\Delta-1) 3^{\alpha}+(n-\Delta+1)(\Delta+2)^{\alpha}+(2 \Delta-n-1)(\Delta+1)^{\alpha}+4^{\alpha} \\
& =f(\Delta)+(n-2 \Delta+1)\left(3^{\alpha}-4^{\alpha}+(\Delta+2)^{\alpha}-(\Delta+1)^{\alpha}\right)<f(\Delta)
\end{aligned}
$$

since the function $x^{\alpha}-(x+1)^{\alpha}$ is strictly decreasing for $x \geq 0$ and $\Delta \geq 4$.
If $2 \leq \Delta \leq \frac{n+1}{2}$, then by Theorem 2.4, $\chi_{\alpha} \leq f(\Delta)$ and equality can be reached. We shall prove that $f^{\prime}(x)<0$, which implies that $f(x)$ is strictly decreasing for $x \geq 2$. One deduces

$$
f^{\prime}(x)=3^{\alpha}+(x+2)^{\alpha}+\alpha x(x+2)^{\alpha-1}-2 \cdot 4^{\alpha} .
$$

Let

$$
g(x)=(x+2)^{\alpha}+\alpha x(x+2)^{\alpha-1}
$$

We get

$$
g^{\prime}(x)=\alpha(x+2)^{\alpha-2}(x(\alpha+1)+4)<0 .
$$

So, $g(x)$ is strictly decreasing for $x \geq 2$, thus implying $g(x) \leq 4^{\alpha}+2 \alpha 4^{\alpha-1}$. Consequently,

$$
f^{\prime}(x) \leq 3^{\alpha}-4^{\alpha}+2 \alpha 4^{\alpha-1}=4^{\alpha}\left(\left(\frac{3}{4}\right)^{\alpha}+\frac{\alpha}{2}-1\right) .
$$

Considering the function $h(x)=\frac{x}{2}+\left(\frac{3}{4}\right)^{x}$, we get $h^{\prime \prime}(x)=\left(\ln \left(\frac{3}{4}\right)\right)^{2}\left(\frac{3}{4}\right)^{x}>0$, hence $h(x)$ is strictly convex. Since $h(-1)=5 / 6<1$ and $h(0)=1, h(x)$ being strictly convex on $[-1,0)$, it follows that $h(x)<1$ on this interval, or $f^{\prime}(x)<0$ for every $-1 \leq \alpha<0$, hence $f(x)$ is strictly decreasing for $x \geq 2$. It follows that for $3<\frac{n+2}{2} \leq \Delta \leq n-1$ we have $\chi_{\alpha}(G)<f(\Delta)<f(3)<f(2)$ and for $3 \leq \Delta \leq \frac{n+1}{2}$ we obtain $\chi_{\alpha}(G) \leq f(\Delta) \leq f(3)<f(2)$. It follows that $C_{n}$ is the unique $n$-vertex unicyclic graph with maximum general sum-connectivity index, equal to $f(2)$. Also the $n$-vertex unicyclic graphs with maximum degree $\Delta=3$ and general sum-connectivity index $f(3)$ are the $n$-vertex graphs with the second maximum general sum-connectivity index. By Theorem 2.4, these graphs consist from a cycle $C_{l}$ of an arbitrary length $l, 3 \leq l \leq n-2$ and a path of length at least two attached to a vertex of $C_{l}$.

## REFERENCES

1. B. Bollobás, P. Erdös, Graphs of extremal weights, Ars Combin., 50, pp. 225-233 (1998).
2. R. Garcia-Domenech, J. Gálvez, J. V. de Julián-Ortiz, L. Pogliani, Some new trends in chemical graph theory, Chem. Rev., 108, pp. 1127-1169 (2008).
3. Z. Du, B. Zhou, N. Trinajstić, Minimum general sum-connectivity index of unicyclic graphs, J. Math. Chem., 48, pp. 697-703 (2010).
4. Z. Du, Bo Zhou, N. Trinajstić, On the general sum-connectivity index of trees, Applied Mathematics Letters, 24, pp. 402-405, (2011).
5. Z. Du, B. Zhou, N. Trinajstić, Sum-connectivity indices of trees and unicyclic graphs of fixed maximum degree, arXiv.org/1210.5043.
6. I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
7. L. B. Kier, L. H. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, New York, 1986.
8. X. Li, I. Gutman, Mathematical Aspects of Randić-type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.
9. B. Lučić, N. Trinajstić, B. Zhou, Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons, Chem. Phys. Lett., 475, pp. 146-148 (2009).
10. M. Randić, On characterization of molecular branching, J. Am. Chem. Soc., 97, pp. 6609-6615 (1975).
11. I. Tomescu, M. Arshad, On the general sum-connectivity index of connected unicyclic graphs with $k$ pendant vertices, Discr. Appl. Math., 181, pp. 306-309 (2015).
12. I. Tomescu, M. K. Jamil, Maximum general sum-connectivity index for trees with given independence number, MATCH Commun. Math. Comput. Chem., 72, pp. 715-722 (2014).
13. B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46, pp. 1252-1270 (2009).
14. B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem., 47, pp. 210-218 (2010).
15. http:www.wolframalpha.com
