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FIXED POINT RESULTS FOR A PAIR OF MULTIVALUED MAPPINGS

IN QUASI METRIC SPACES VIA NEW APPROACH
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In this paper, our purpose is to show that multivalued mappings satisfying

new generalized contraction on the intersection of an open ball and a sequence involving

rational expression have a common fixed point in left K-sequentially complete quasi
metric space. We consider an illustrative example. Moreover, we apply our results to

obtain results endowed with a graph and an order in quasi metric spaces.
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1. Introduction

Fixed point theory (see [1]-[28]) has been an active research field over the last six
decades. One of the generalizations of the metric space is the quasi metric space that was
introduced by Wilson [28]. The commutativity condition does not hold in general in a quasi
metric space. Several authors used these concepts to prove some fixed point theorems, see
[8, 14].

Nadler [15] initiated the study of fixed point theory for multivalued mappings. Since
then, an interesting and rich fixed point theory for such mappings was developed in many
directions, see [3, 6, 27]. Arshad et al. [4] observed that there was mappings which had
fixed point but there was no any result to ensure the existence of fixed point of such map-
pings. They introduced a contraction on closed ball to achieve common fixed points for such
mappings. For further results on closed balls, see (see [4, 5, 17, 18, 21, 25, 26]).

In this paper, we have extended the result of Altun et al. [2] in five different ways by
using

(i) multivalued mappings instead of single-valued mappings;
(ii) open ball instead of whole space;
(iii) new generalized contraction instead of Banach type contraction;
(iv) left K-sequentially complete quasi metric space instead of complete metric space.
(v) generalized function α : X ×X → [0,+∞) instead of partial order relation.

We apply our result to obtain results in ordered spaces and spaces endowed with a graph.
We recall the following definitions and results which will be useful to understand the paper.
Definition 1.1 [2] Let µ ∈ Ψ and Ψ denotes the set of functions µ : [0,∞) → [0,∞)
satisfying the conditions:

(Ψ1) µ is non-decreasing.
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(Ψ2) For all t > 0, we have
∞∑
k=0

µk (t) < ∞, where µk is the kth iterate of µ. The

function µ ∈ Ψ is called comparison function.
Lemma 1.1 [2] Let µ ∈ Ψ. Then

(i) µ (t) < t, for all t > 0,
(ii) µ (0) = 0.

Definition 1.3 [28] Let X be anon empty set and q : X ×X → [0,∞) be a function, which
satisfies:

(d1) q (x, y) = 0 if and only if x = y,
(d2) q (x, y) ≤ q (x, z) + q (z, y) .

Then q is called a quasi metric and the pair (X, q) is called a quasi metric space. For x ∈ X
and ε > 0, Bq(x, ε) = {y ∈ X : q(x, y) < ε and q(y, x) < ε} and Bq(x, ε) = {y ∈ X :
q(x, y) ≤ ε and q(y, x) ≤ ε} are open ball and closed ball in (X, q) respectively.

Reilly et al. [20] introduced the notion of left (right) K -Cauchy sequence and left
(right) K-sequentially complete spaces.
Definition 1.4 [20] Let (X, q) be a quasi metric space.
(a) A sequence {xn} in (X, q) is called left (right) K- Cauchy if for every ε > 0, there is
exists n0 ∈ N such that q (xm, xn) < ε (respectively q (xn, xm) < ε).
(b) A sequence {xn} in (X, q) is converges to x, if limn→∞ q (xn, x) = limn→∞ q (x, x) = 0.
In this case, the point x is called a limit of the sequence {xn}.
(c) (X, q) is called left (right) K -sequentially complete if every left (right) K -Cauchy
sequence in q -converges to a point x ∈ X such that q (x, x) = 0.
Definition 1.5 [27] Let (X, q) be a quasi metric space. Let K be a non empty subset of X
and let x ∈ X. An element y0 ∈ K is called a best approximation in K if

q(x,K) = q(x, y0); where q(x,K) = inf {q(x, y), y ∈ K} ,

and q(K,x) = q(y0, x), where q(K,x) = inf {q(y, x), y ∈ K} .
If each x ∈ X has at least one best approximation in K, then K is called a proximinal set.
We denote P (X) be the set of all proximinal subsets of X.
Definition 1.6 [27] The function Hq : P (X)× P (X)→ X, defined by

Hq(A,B) = max

{
sup
x∈A

q(x,B), sup
y∈B

q(y,A)

}
,

is called quasi Hausdorff metric on P (X). Also (P (X), Hq) is known as quasi Hausdorff
metric space.
Lemma 1.2 [27] Let (X, q) be a quasi metric space. Let (P (X), Hq) be quasi Hausdorff
metric space on P (X). Then for all A,B ∈ P (X) and for each a ∈ A there exists ba ∈ B,
such that q(a, b) ≤ Hq(A,B) and Hq(B,A) ≥ q(ba, a).
Definition 1.7 Let X be a non empty set and α : X × X → [0,+∞) be a mapping
such that α (x, y) ≥ 1 and α (y, x) ≥ 1 implies x = y. Let M ⊆ X, define α∗ (x,M) =
inf {α (x, a) , a ∈M} and α∗ (M,y) = inf {α (b, y) , b ∈M} .
Lemma 1.3 [27] Every closed set Y in a left (right) K-sequentially complete quasi metric
space X is left (right) K-sequentially complete.

2. Main result

Let (X, q) be a quasi metric space, x0 ∈ X and T : X → P (X) be a multival-
ued mapping on X. As Tx0 is a proximinal set, then there exists x1 ∈ Tx0 such that
q(x0, Tx0) = q(x0, x1) and q(Tx0, x0) = q(x1, x0). Now, for x1 ∈ X, there exist x2 ∈ Tx1
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such that q(x1, Tx1) = q(x1, x2) and q(Tx1, x1) = q(x2, x1). Continuing this process, we
construct a sequence xn of points in X such that xn+1 ∈ Txn, q(xn, Txn) = q(xn, xn+1)
and q(Txn, xn) = q(xn+1, xn). We denote this iterative sequence {XT (xn)} and say that
{XT (xn)} is a sequence in X generated by x0.
Theorem 2.1 Let (X, q) be a left K-sequentially complete quasi metric space, S, T : X →
P (X) be the multivalued mappings, µ ∈ Ψ, x0 ∈ X, r > 0 and α : X × X → [0,+∞).
Suppose that the following assumptions hold:

(i) For every x, y ∈ Bq(x0, r) ∩ {XT (xn)} with α∗ (Sx, x) ≥ 1, α∗ (y, Sy) ≥ 1, we
have

max{Hq (Tx, Ty) , Hq (Ty, Tx)} ≤ µ (Pq (x, y)) , (1)

where

Pq (x, y) = max

{
q (x, y) , q (x, Tx) ,

q (x, Tx) q (x, Ty) + q (y, Ty) q (y, Tx)

q(x, Ty) + q(y, Tx)

}
.

(ii)
j∑

i=0

max
{
µi (q (x1, x0)) , µi (q (x0, x1))

}
< r, for all j ∈ N ∪ {0} . (2)

(iii) If x ∈ Bq(x0, r), q (x, Tx) = q (x, y) and q (Tx, x) = q (y, x) , then

(a) α∗ (x, Sx) ≥ 1, implies α∗ (Sy, y) ≥ 1, (b) α∗ (Sx, x) ≥ 1, implies α∗ (y, Sy) ≥ 1.

(iv) The set G(S) = {x : α∗ (x, Sx) ≥ 1 and x ∈ Bq(x0, r)} is closed and contained x0.
Then the subsequence {x2n} of {XT (xn)} is a sequence in G (S) and a sequence

{x2n} → x∗ ∈ G(S). Also, if inequality (1) holds for x, y ∈ {x∗} , then T and S have a
common fixed point x∗ in Bq(x0, r).

Proof. As x0 be an arbitrary element of G (S), from condition (iv) α∗ (x0, Sx0) ≥ 1. Consider
the sequence {XT (xn)} . Then there exists x1 ∈ Tx0 such that

q (x0, Tx0) = q (x0, x1) and q (Tx0, x0) = q (x1, x0) .

From condition (iii) α∗ (Sx1, x1) ≥ 1. In particular, (2) holds for j = 0, so

max {q (x1, x0) , q (x0, x1)} < r.

Therefore q (x1, x0) < r and q (x0, x1) < r. Hence x1 ∈ Bq(x0, r). Let x2, ...xj ∈ Bq(x0, r) ∩
{XT (xn)} , α∗ (xj , Sxj) ≥ 1 and α∗ (Sxj+1, xj+1) ≥ 1, for some j ∈ N, where j = 2i,

i = 2, 3, ..., j2 . Now by Lemma 1.2, we have

q (x2i, x2i+1) ≤ Hq (Tx2i−1, Tx2i)

≤ max {Hq (Tx2i−1, Tx2i) , Hq (Tx2i, Tx2i−1)} .
As x2i−1, x2i ∈ Bq(x0, r) ∩ {XT (xn)} , α∗ (x2i, Sx2i) ≥ 1 and α∗ (Sx2i−1, x2i−1) ≥ 1, then
by (1), we have

q (x2i, x2i+1) ≤ µ (max {q (x2i−1, x2i) , q (x2i−1, x2i) ,

q (x2i−1, x2i) q (x2i−1, Tx2i) + q (x2i, x2i+1) q (x2i, Tx2i−1)

q (x2i−1, Tx2i) + q (x2i, Tx2i−1)

})
,

q (x2i, x2i+1) ≤ µ(q (x2i−1, x2i)) . (3)

Which implies that

q (x2i, x2i+1) ≤ max {µ (q (x2i−1, x2i)) , µ (q (x2i, x2i−1))} . (4)

Again by Lemma 1.2, we have

q (x2i−1, x2i) ≤ Hq (Tx2i−2, Tx2i−1)

≤ max {Hq (Tx2i−2, Tx2i−1) , Hq (Tx2i−1, Tx2i−2)} .
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As x2i−1, x2i−2 ∈ Bq(x0, r) ∩ {XTxn} , α∗ (Sx2i−1, x2i−1) ≥ 1 and α∗ (x2i−2, Sx2i−2) ≥ 1,
then by (1), we have

q (x2i−1, x2i) ≤ µ (max {q (x2i−1, x2i−2) , q (x2i−1, x2i) , q (x2i−2, x2i−1)})
= µ (max {q (x2i−1, x2i−2) , q (x2i−2, x2i−1)}) .

As µ is non decreasing function, so

µ (q (x2i−1, x2i)) ≤ max
{
µ2 (q (x2i−1, x2i−2)) , µ2 (q (x2i−2, x2i−1))

}
. (5)

Using (5) in (3) , then

q (x2i, x2i+1) ≤ max
{
µ2 (q (x2i−1, x2i−2)) , µ2 (q (x2i−2, x2i−1))

}
. (6)

Now, by Lemma 1.2

q (x2i−2, x2i−1) ≤ Hq (Tx2i−3, Tx2i−2) .

As x2i−3, x2i−2 ∈ Bq(x0, r) ∩ {XTxn} , α∗ (x2i−2, Sx2i−2) ≥ 1 and α∗ (Sx2i−3, x2i−3) ≥ 1,
then by (1), we have

q (x2i−2, x2i−1) ≤ µ (q (x2i−3, x2i−2)) . (7)

Which implies that

µ2 (q (x2i−2, x2i−1)) ≤ µ2 (µ (max {q (x2i−3, x2i−2) , q (x2i−2, x2i−3)})) . (8)

Now, by Lemma 1.2

q (x2i−1, x2i−2) ≤ Hq (Tx2i−2, Tx2i−3) .

As x2i−3, x2i−2 ∈ Bq(x0, x1) ∩ {XTxn} , α∗ (Sx2i−3, x2i−3) ≥ 1 and α∗ (x2i−2, Sx2i−2) ≥ 1,
then by (1), we have

q (x2i−1, x2i−2) ≤ µ (max {q (x2i−2, x2i−3) , q (x2i−3, x2i−2)}) .
As µ is non decreasing function, so

µ2 (q (x2i−1, x2i−2)) ≤ µ2 (µ (max {q (x2i−2, x2i−3) , q (x2i−3, x2i−2)})) . (9)

Combining inequalities (6), (8) and (9), we have

q (x2i, x2i+1) ≤ max
{
µ3q (x2i−3, x2i−2) , µ3q (x2i−2, x2i−3)

}
. (10)

Following the patterns of inequalities (4), (6) and (10), we have

q (x2i, x2i+1) ≤ max
{
µ2i
(
q (x0, x1) , µ2i (q (x1, x0))

)}
. (11)

Also, by Lemma 1.2, we have

q (x2i+1, x2i) ≤ Hq (Tx2i, Tx2i−1) .

As x2i−1, x2i ∈ Bq(x0, r) ∩ {XT (xn)} , α∗ (Sx2i−1, x2i−1) ≥ 1, and α∗ (x2i, Sx2i) ≥ 1, then
by (1), we have

q (x2i+1, x2i) ≤ µ (q (x2i−1, x2i)) , (12)

which implies

q (x2i+1, x2i) ≤ max {µ (q (x2i−1, x2i)) , µ (q (x2i, x2i−1))} . (13)

Using (5) in (12)

q (x2i+1, x2i) ≤ max
{
µ2 (q (x2i−1, x2i−2)) , µ2 (q (x2i−2, x2i−1))

}
. (14)

Combining the inequalities (8), (9) and (14), we have

q (x2i+1, x2i) ≤ max
{
µ3q (x2i−3, x2i−2) , µ3q (x2i−2, x2i−3)

}
. (15)

Following the patterns of inequalities (13), (14) and (15), we have

q (x2i+1, x2i) ≤ max
{
µ2i (q (x1, x0)) , µ2i (q (x0, x1))

}
. (16)
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Now, by using the inequalities (11), (2) and triangle inequality, we have

q (x0, x2i+1) ≤
2i∑

j=0

max
{
µjq (x1, x0) , µjq (x0, x1)

}
< r. (17)

Similarly, by using inequalities (16), (2) and triangle inequality, we have

q (x2i+1, x0) ≤
2i∑

j=0

max
{
µj (q (x1, x0)) , µj (q (x0, x1))

}
< r. (18)

By inequality (17) and (18) , we have x2i+1 ∈ Bq(x0, r).Also q (x2i+1, Tx2i+1) = q (x2i+1, x2i+2)
and q (Tx2i+1, x2i+1) = q (x2i+2, x2i+1) . As α∗ (Sx2i+1, x2i+1) ≥ 1, so from condition (iii),
we have α∗ (x2i+2, Sx2i+2) ≥ 1. Similarly, we have

q (x2i+1, x2i+2) ≤ max
{
µ2i+1 (q (x1, x0)) , µ2i+1 (q (x0, x1))

}
. (19)

and

q (x2i+2, x2i+1) ≤ max
{
µ2i+1 (q (x1, x0)) , µ2i+1 (q (x0, x1))

}
. (20)

Also,

q (x0, x2i+2) ≤ r and q (x2i+2, x0) ≤ r.
It following that x2i+2 ∈ Bq(x0, r). Also

q
(
x

2i+2
, Tx

2i+2

)
= q

(
x

2i+2
, x

2i+3

)
and q

(
Tx

2i+2
, x

2i+2

)
= q

(
x

2i+3
, x

2i+2

)
.

As α∗ (x2i+2, Sx2i+2) ≥ 1, so from condition (iii) we have α∗ (Sx2i+3, x2i+3) ≥ 1. Hence by
mathematical induction xn ∈ Bq(x0, r), α

∗ (x2n, Sx2n) ≥ 1 and α∗ (Sx2n+1, x2n+1) ≥ 1, for
all n ∈ N. Also, x2n ∈ G (S) . Now inequalities (11), (16) , (19) and (20) can be written as

q (xn, xn+1) ≤ max {µn (q (x1, x0)) , µn (q (x0, x1))} , (21)

q (xn+1, xn) ≤ max {µn (q (x1, x0)) , µn (q (x0, x1))} , (22)

for all n ∈ N. Fix ε > 0 and let k1 (ε) ∈ N such that∑
k≥k1(ε)

max
{
µk (q (x1, x0)) , µk (q (x0, x1))

}
< ε.

Let n,m ∈ N with m > n > k1 (ε) , then

q (xn, xm) ≤
m−1∑
k=n

q (xk, xk+1) ,

≤
m−1∑
k=n

max
{
µk (q (x1, x0)) , µk (q (x0, x1))

}
,

q (xn, xm) <
∑

k≥k1(ε)

max {µnq (x1, x0) , µnq (x0, x1)} < ε.

Thus we proved that {XT (xn)} is a left K- Cauchy sequence in (X, q) . As (X, q) is left K
sequentially complete, so {XT (xn)} → x∗ ∈ X and

lim
n→∞

q(x2n, x
∗) = lim

n→∞
q(x∗, x2n) = 0. (23)

As {x2n} is a subsequence of {XT (xn)} , so x2n → x∗. Also, {x2n} is a sequence in G(S)
and G(S) is closed, so x∗ ∈ G(S) and therefore

α∗ (x∗, Sx∗) ≥ 1. (24)

Now

q (x∗, x∗) ≤ q (x∗, x2n) + q (x2n, x
∗) .
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Which implies that q (x∗, x∗) = 0. Now, by Lemma 1.2, we have

q (x∗, Tx∗) ≤ q (x∗, x2n+2) +Hq (Tx2n+1, Tx
∗) .

By assumption, inequality (1) holds for x∗. Also α∗ (Sx2n+1, x2n+1) ≥ 1 and α∗ (x∗, Sx∗) ≥
1, so

q (x∗, Tx∗) ≤ q (x∗, x2n+2) + µ (max {q (x2n+1, x
∗) , q (x2n+1, x2n+2) ,

q (x2n+1, x2n+2) q (x2n+1, Tx
∗) + q (x∗, Tx∗) qb (x∗, Tx2n+1)

q (x2n+1, Tx∗) + q (x∗, Tx2n+1)

})
.

Since qb (x∗, Tx2n+1) ≤ qb (x∗, x2n+2) . Taking limit as n→∞, on both side, we get

lim
n→∞

qb (x∗, Tx2n+1) = 0 (25)

Letting n→∞, and by using inequalities (23) and (25), we obtain

q (x∗, Tx∗) = 0. (26)

Now,

q (Tx∗, x∗) ≤ Hq (Tx∗, Tx2n+1) + q (x2n+2, Tx
∗) .

As inequality (1) hold for x∗, α∗ (x∗, Sx∗) ≥ 1 and α∗ (Sx2n+1, x2n+1) ≥ 1, then

q (Tx∗, x∗) ≤ (max {q (x2n+1, x
∗) , q (x2n+1, x2n+2) ,

q (x2n+1, x2n+2) q (x2n+1, Tx
∗) + q (x∗, Tx∗) qb (x∗, Tx2n+1)

q (x2n+1, Tx∗) + q (x∗, Tx2n+1)

})
+ q (x2n+2, x

∗) .

Letting n→∞, and by using inequalities (23) and (26), we obtain

q (Tx∗, x∗) = 0. (27)

From inequalities (26) and (27), we have x∗ ∈ Tx∗. As α (x∗, Sx∗) ≥ 1 and q (x∗, Tx∗) =
q (Tx∗, x∗) = q (0, 0) , then from (iii)

α∗ (Sx∗, x∗) ≥ 1. (28)

From (24) and (28), we have α∗ (x∗, Sx∗) ≥ 1, α∗ (Sx∗, x∗) ≥ 1. Thus implies α (x∗, y) ≥ 1,
α (y, x∗) ≥ 1, for all y ∈ Sx∗. Thus by definition 1.9, x∗ = y. Hence x∗ is a common fixed
point for S and T . �

Example 2.1 Let X = [0,∞) and q (x, y) =

{
x+ 2y if x 6= y
0 if x = y

, for (x, y) ∈ X × X,

then (X, q) be left (right) K-sequentially complete quasi metric space. Consider µ be a
function on [0,∞) define by µ (t) = 3t

4 . Let R be the binary relation on X defined by

R =

{
(x,

x

4
) : x ∈

{
0, 1,

1

16
,

1

256
,

1

4096
, ...

}}
∪
{

(
x

4
, x) : x ∈

{
1

4
,

1

64
,

1

1024
, ...

}}
.

Define the pair of multivalued mappings T, S : X → P (X) be

Tx =

{ [
x
4 ,

x
2

]
if x ∈ [0, 1]

[x+ 1, x+ 2] if x ∈ (1,∞)
, Sx =

{
{x4} if x ∈ [0, 1]
{2x} if x ∈ (1,∞)

.

Define α : X ×X → [0,∞) as follows

α (x, y) =

 1 if (x, y) ∈ R
1
2 if x, y ∈ [0, 10) ∧ (x, y) /∈ R

3 otherwise.
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A = {x : α∗ (x, Sx) ≥ 1} =

{
0, 1,

1

16
,

1

256
,

1

4096
, ...

}
.

B = {y : α∗ (Sy, y) ≥ 1} =

{
0,

1

4
,

1

64
,

1

1024
, ...

}
.

Let x0 = 1 and r = 21, B(x0, r) = [0, 10). Then,

G(S) = {x : α∗ (x, Sx) ≥ 1 and x ∈ Bq(x0,r)}

=

{
0, 1,

1

16
,

1

256
, ...

}
.

Clearly G(S) is closed and contained x0, so condition (iv) is satisfied. Now, as 1
4n−1 ∈

Bq(x0, r), for all n ∈ N

q(
1

4n−1
, T

1

4n−1
) = q(

1

4n−1
,

1

4× 4n−1
).

and

q(T
1

4n−1
,

1

4n−1
) = q(

1

4× 4n−1
,

1

4n−1
).

As α∗
(

1
4n−1 , S

1
4n−1

)
≥ 1, if n is odd, implies α∗

(
S 1

4×4n−1 ,
1

4×4n−1

)
≥ 1, if n is odd. Also,

α∗
(
S 1

4n−1 ,
1

4n−1

)
≥ 1, if n is even, implies α∗

(
1

4×4n−1 , S
1

4×4n−1

)
≥ 1, if n is even. Also,

0 ∈ Bqb(x0, r), qb(0, T0) = qb(0, 0), qb(T0, 0) = qb(0, 0). As α∗ (0, S0) ≥ 1 if and only if
α∗ (S0, 0) ≥ 1. Hence, condition (iii) is satisfied. Now, 2, 3 ∈ Bq(x0, r) with α∗ (S3, 3) �
1, α∗ (2, S2) � 1,

max {Hq (T2, T3) , Hq (T3, T2)} = max {11, 13} = 13 ≥ Pq(2, 3).

So, the contractive condition does not hold on whole Bq(x0, r). Now, for 11, 12 ∈ X with
α∗ (S11, 11) ≥ 1, α∗ (12, S12) ≥ 1

max {Hq (T11, T12) , Hq (T12, T11)} = max {40, 38} = 40 ≥ Pq(x, y).

So, the contractive condition does not hold on X and Bq(x0, r). Now if x, y ∈ Bq(x0, r) ∩
{XTxn} with α∗ (Sx, x) ≥ 1, α∗ (y, Sy) ≥ 1, then in general x = 1

4n−1 , y = 1
4m−1 , where n

is even, m is odd.
Case i: For n ≤ m, we have

H(Tx, Ty) = H

([
1

4× 4n−1
,

1

2× 4n−1

]
,

[
1

4× 4m−1
,

1

2× 4m−1

])
= max

{
q

(
1

2× 4n−1
,

1

4× 4m−1

)
, q

(
1

4× 4n−1
,

1

2× 4m−1
)

)}
= max

{
1

2× 4n−1
+

1

2× 4m−1
,

1

4× 4n−1
+

1

4m−1
)

}
= max

{
4m−n + 1

2× 4m−1
,

4m−n + 4

4× 4m−1

}
=

4m−n + 1

2× 4m−1
.

Now,

H(Ty, Tx) = max

{
1 + 4m−n

2× 4m−1
,

1 + 4× 4m−n

4× 4m−1

}
=

1 + 16× 4m−n

16× 4m−1
.
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Now, we have

1 + 4× 4m−n

4× 4m−1
<

3

4


(

3
2×4n−1

)(
4×4m−n+2
4×4m−1

)
+
(

3
2×4m−1

)(
4+2×4m−n

4×4m−1

)
(

4×4m−n+2
4×4m−1

)
+
(

4+2×4m−n

4×4m−1

)
 ,

or max {Hq (Tx, Ty) , Hq (Ty, Tx)} ≤ µ (Pq(x, y)) .

Case ii: Similarly, for n > m, we have

max {Hq (Tx, Ty) , Hq (Ty, Tx)} =
1 + 4× 4n−m

4× 4n−1

<
3

4

(
1 + 2× 4n−m

4n−1

)
= µ (Pq(x, y)) .

Case iii: If x = 0, y = 1
4m−1 , we get

max {Hq (Tx, Ty) , Hq (Ty, Tx)} = max

{
1

4m−1
,

1

2× 4m−1

}
=

1

4m−1

<
2

4m−1
= µ (Pq(x, y)) .

Case iv: If x = 1
4n−1 , y = 0, we get

max {Hq (Tx, Ty) , Hq (Ty, Tx)} =
1

4n−1
≤ µ (Pq(x, y)) .

Case v: Inequality (1) trivially holds for x = 0 and y = 0. Also,

j∑
i=0

max
{
µi (q (x1, x0)) , µi (q (x0, x1))

}
= 9 < 21 = r.

Hence, all the conditions of Theorem 2.1 are satisfied. Moreover, T and S have a common
fixed point 0.

By taking complete metric space instead of left K-sequentially complete quasi metric
space, we obtain the following result.
Theorem 2.2 Let (X, d) be a complete metric space, r > 0, x0 ∈ X, S, T : X → P (X) be
the multivalued mappings on Bd(x0, r), µ ∈ Ψ and α : X ×X → [0,+∞). Suppose that the
following assumptions hold:

(i) for all x, y ∈ Bd(x0, r) ∩ {XT (xn)} with α∗ (Sx, x) ≥ 1, α∗ (y, Sy) ≥ 1, we have

Hd (Tx, Ty) ≤ µ (Pd (x, y)) ,

(ii)
j∑

i=0

µi (d (x1, x0)) < r , for all j ∈ N ∪ {0} .

(iii) if x ∈ Bd(x0, r), d (x, Tx) = d (x, y) , then
(a) α∗ (x, Sx) ≥ 1, implies α∗ (Sy, y) ≥ 1,
(b) α∗ (Sx, x) ≥ 1, implies α∗ (y, Sy) ≥ 1,
(iv) the set G(S) = {x : α (x, Sx) ≥ 1 and x ∈ Bd(x0, r)} is closed and contained x0.

Then the subsequence {x2n} of {XT (xn)} is a sequence in G (S) and a sequence {x2n} →
x∗ ∈ G(S) and d (x∗, x∗) = 0. Also, if inequality (i) holds for x∗. Then T and S have a
common fixed point x∗ in Bd(x0, r).

By excluding open ball, we obtain the following result.
Theorem 2.3 Let (X, q) be a complete left K-sequentially quasi metric space, α : X×X →
[0,+∞), µ ∈ Ψ, x0 ∈ X and S,T : X → P (X) . Suppose that the following assertions hold:

(i) For all x, y ∈ X ∩ {XT (xn)} with α∗ (Sx, x) ≥ 1, α∗ (y, Sy) ≥ 1, we have

max{Hq (Tx, Ty) , Hq (Ty, Tx)} ≤ µ (Pq (x, y)) ,
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where

Pq (x, y) = max

{
q (x, y) , q (x, Tx) ,

q (x, Tx) q (x, Ty) + q (y, Ty) q (y, Tx)

q(x, Ty) + q(y, Tx)

}
.

(ii) If q (x, Tx) = q (x, y) and q (Tx, x) = q (y, x) , then
(a) α∗ (x, Sx) ≥ 1, implies α∗ (Sy, y) ≥ 1, (b) α∗ (Sx, x) ≥ 1, implies α∗ (y, Sy) ≥ 1,
(iii) The set G(S) = {x : α (x, Sx) ≥ 1} is closed and contained x0.

Then the subsequence {x2n} of {XT (xn)} is a sequence in G (S) and a sequence {x2n} →
x∗ ∈ G(S) and q (x∗, x∗) = 0. Also, if inequality (i) holds for x∗. Then T and S have a
common fixed point x∗ in X.

By taking self mappings, we obtain the following result.
Theorem 2.4 Let (X, q) be a complete left K-sequentially quasi metric space, α : X×X →
[0,+∞) be a function, r > 0, µ ∈ Ψ, S, T : X → X be the self mappings, x0 ∈ X and
xn = Txn−1 be a Picard sequence. Suppose that the following assumptions hold:

(i) For all x, y ∈ Bq(x0, r) ∩ {xn} with α (Sx, x) ≥ 1 and α (y, Sy) ≥ 1, we have

max{q (Tx, Ty) , q (Ty, Tx)} ≤ µ (Pq (x, y)) ,

where

Pq (x, y) = max

{
q (x, y) , q (x, Tx) ,

q (x, Tx) q (x, Ty) + q (y, Ty) q (y, Tx)

q(x, Ty) + q(y, Tx)

}
.

(ii)
j∑

i=0

max
{
µi (q (x1, x0)) , µi (q (x0, x1))

}
< r,for all j ∈ N ∪ {0} .

(iii) if x ∈ Bq(x0, r), then
(a) α (x, y) ≥ 1 implies α (STx, x) ≥ 1,
(b) α∗ (y, x) ≥ 1 implies α (Tx, STx) ≥ 1,
(vi) the set G(S) = {x : α (x, y) ≥ 1 and x ∈ Bq(x0, r)} is closed and contained x0.

Then the subsequence {x2n} of {xn} is a sequence in G (S) and a sequence {x2n} → x∗ ∈
G(S) and q (x∗, x∗) = 0. Also, if inequality (i) holds for x∗. Then T and S have a common
fixed point x∗ in Bq(x0, r).

3. Fixed point results for contractions endowed with a graph and a partial
order

Consistent with Jachymski [11], let (X, q) be a quasi metric space and 4 denotes
the diagonal of the Cartesian product X ×X. Consider a directed graph G such that the
set V (G) of its vertices coincides with X and the set E(G) of its edges contains all loops,
i.e, 4 ⊆ E(G). We assume G has no parallel edges, so we can identify G with the pair
(V (G), E(G)). Moreover, we may treat G as a weighted graph [16], by assigning to each
edge the distance between its vertices. If x and y are vertices in a graph G, then a path in
G from x to y of length m(m ∈ N) is a sequence {xi}mi=0 of m+ 1 vertices such that x0 = x,
xm = y and (xn−1, xn) ∈ E(G) for i = 1, ...,m.
Definition 3.1 Let (X, q) be a quasi metric space endowed with a graph G and S, T : X →
P (X) be multivalued mappings. Assume that for r > 0, x0 ∈ Bq(x0, r) and µ ∈ Ψ, the
following conditions hold:

max{Hq (Tx, Ty) , Hq (Ty, Tx)} ≤ µ (Pq (x, y)) , (29)

for all x, y ∈ Bq(x0, r)∩{XT (xn)} with {(y, v) ∈ E (G) : v ∈ Sy} and {(u, x) ∈ E (G) , u ∈ Sx} ,
where

Pq (x, y) = max

{
q (x, y) , q (x, Tx) ,

q (x, Tx) q (x, Ty) + q (y, Ty) q (y, Tx)

q(x, Ty) + q(y, Tx)

}
.
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Then the mappings (S, T ) are called a µ−graphic contractive multivalued mappings on open
ball.
Theorem 3.1 Let (X, q) be a complete left K sequentially quasi metric space endowed
with graph G, Let r > 0, x0 ∈ Bq(x0, r) and S,T : X → P (X) be µ−graphic contractive
multivalued mappings on Bq(x0, r). Suppose that the following assumptions hold:

(i)
j∑

i=0

max
{
µiq (x1, x0) , µiq (x0, x1)

}
< r, for all j ∈ N ∪ {0} .

(ii) If x ∈ Bq(x0, r), q (x, Tx) = q (x, y) and q (Tx, x) = q (y, x) , then
(a) (x, u) ∈ E (G) , for all u ∈ Sx implies (v, y) ∈ E (G), for all v ∈ Sy,
(b) (u, x) ∈ E (G) , for all u ∈ Sx implies (y, v) ∈ E (G) , for all v ∈ Sy.
(iii) The set G(S) = {x : (x, y) ∈ E (G) for all y ∈ Sx and x ∈ Bq(x0, r)} is closed

and contained x0.
Then the subsequence {x2n} of {XT (xn)} is a sequence in G (S) and a sequence {x2n} →
x∗ ∈ G(S). Also, if inequality (29) holds for x∗. Then T and S have a common fixed point
x∗ in Bq(x0, r).

Proof. Define α : X × X → [0,∞) , by α (y, v) = 1, for all v ∈ Sy, if and only if y ∈
Bq(x0, r) ∩ {XT (xn)} with {(y, v) ∈ E (G) : v ∈ Sy} . Also α (u, x) = 1, for all u ∈ Sx, if
and only if x ∈ Bq(x0, r)∩{XT (xn)} with {(u, x) ∈ E (G) , u ∈ Sx} . Moreover α (x, y) = 0,
otherwise. Now, as (S, T ) is a µ−graphic contractive multivalued mappings on open ball, so
inequality (29), implies inequality (1). Assumption (i) of Theorem 3.1 implies assumption
(ii) of Theorem 2.1. Assumption (ii) of Theorem 3.2 implies assumption (iii) of Theorem 2.1.
Assumption (iii) of Theorem 3.2 implies assumption (iv) of Theorem 2.1. So, all conditions
of Theorem 2.1 are satisfied. Hence the subsequence {x2n} of {XT (xn)} is a sequence in
G (S), for all n ∈ N ∪ {0} and a sequence {x2n} → x∗ ∈ G(s). Also if inequality (29) holds
for x∗, then inequality (1) holds for x∗. Then T and S have a common fixed point x∗ in
Bq(x0, r). �

Definition 3.2 [16] Let (X,�) be a partially ordered set and T : X → X be a given
mapping. We say that T is non decreasing with respect to � if x, y ∈ X, x � y ⇒ Tx � Ty.
Definition 3.3 [16] Let (X,�) be a partially ordered set and d be a metric on X. We say
that (X,�, d) is regular if for every nondecreasing sequence {xn} ⊂X such that xn → x ∈ X
as n→∞, there exists a subsequence

{
xn(k)

}
of {xn} such that xn(k) � x for all k.

Now, we have the following results.
Theorem 3.2 Let (X,�, q) be an ordered complete left K sequentially quasi metric space,
r > 0, x0 ∈ X and S,T : X → P (X) be a non decreasing mappings on Bq(x0, r), with
respect to � and suppose there exists a function µ ∈ Ψ satisfy the following:

(i) for all (x, y) ∈ Bq(x0, r) ∩ {XT (xn)} with Sx � x and y � Sy, we have

max{Hq (Tx, Ty) , Hq (Ty, Tx)} ≤ µ (Pq (x, y)) , (30)

where

Pq (x, y) = max

{
q (x, y) , q (x, Tx) ,

q (x, Tx) q (x, Ty) + q (y, Ty) q (y, Tx)

q(x, Ty) + q(y, Tx)

}
.

(ii)
j∑

i=0

max
{
µiq (x1, x0) , µiq (x0, x1)

}
< r, for all j ∈ N ∪ {0} .

(iii) If x ∈ Bq(x0, r), q (x, Tx) = q (x, y) and q (Tx, x) = q (y, x) , then
(a) x � Sx, implies Sy � y, (b) Sx � x, implies y � Sy.
(iv) The set G(S) = {x : x � Sx and x ∈ Bq(x0, r)} is closed and contained x0.

Then the subsequence {x2n} of {XT (xn)} is a sequence in G (S), for all n ∈ N ∪ {0} and
{x2n} → x∗ ∈ G(S). Also if inequality (i) holds for x∗. Then T and S have a common fixed
point x∗ in Bq(x0, r).
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Proof. Define α : X × X → [0,∞) , by α (y, v) = 1, for all v ∈ Sy, if and only if y ∈
Bq(x0, r) ∩ {XT (xn)} with y � v, v ∈ Sx. Also α (u, x) = 1, for all u ∈ Sx, if and
only if x ∈ Bq(x0, r) ∩ {XT (xn)} with x � u, u ∈ Sx. Moreover α (x, y) = 0, otherwise.
Then, clearly Assumption (i)-(iv) of Theorem 3.2 implies assumption (i)-(iv) of Theorem
2.1. Hence the subsequence {x2n} of {XT (xn)} is a sequence in G (S), for all n ∈ N ∪ {0}
and a sequence {x2n} → x∗ ∈ G(s). Also, if inequality (i) holds for x∗, then inequality (2.1)
holds for x∗. Then T and S have a common fixed point x∗ in Bq(x0, r). �

Remark 3.1. By taking six proper subsets of Pq (x, y) instead of Pq (x, y) , we can obtain
six new corollaries for each of theorems; Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem
2.4, Theorem 3.1 and Theorem 3.2.
Remark 3.2. Fixed point result in right K sequentially quasi metric space can be obtained
in a similar way.

4. Conclusion

In the present paper, we have obtained sufficient conditions to ensure the existence of
fixed point for a pair of multivalued mappings satisfying µ− α∗ contractive condition on a
sequence contained in an open ball. An example is given to demonstrate the variety of our
results. Fixed point results with graphic contractions on a sequence contained in an open
ball for such mappings are also established. Results endowed with a partial order have been
obtained. Moreover, we investigate our results in a better framework of quasi-metric spaces.
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contractions in b-metric spaces, Fixed Point Theory Appl., 2012(2012), Art. No. 88.
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